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SECTION 1
SUMMARY

The a priori prediction of multinozzle rocket exhaust flow fields is
addressed in detail. The fundamental requirements for accurate prediction of
plume IR signature are derived and new quantitative relationships between
optical signal and plume properties are derived. It is shown that, among a
variety of requirements, plume models must include an accurate detailed
description of the three dimensional near field of the multinozzle plume self
impingement to achieve the accuracy and reliabilty of the optical predictions,
over the desired altitude range. The qualitative structure of these complex
three dimensional flow fields is explained for the first time. Several of the
requlating flow processes thus identified are three dimensional in nature and
have no counterparts in classical two dimensional supersonic flow theory. One
such process, the intersection of two three dimensional shock surfaces, is
discussed in detail and a qualitative account of the developing pattern is
given. A numerical procedure, “the floating fitted shock" technique, fit the
requirements of accuracy and generality necessary for the computation of the
multinozzle plume flow fields. This method is conceded to be the mos:
desirable, albeit most complex, for the solution of supersonic flows. A
computer code was devised which contained discrete discontinuities including
slip surfaces, a shock surface and a complex sonic shock/centered expansion
singular point based on a boundary point calculation which properly accounts
for the three dimensional propagation of characteristics. The code was
successful for simplified geometries but could not be increased in generality
to handle the complete flow pattern. An analysis for the Mach disc flow field
in an axisymmetric plume was derived which leads to a basic interaction
equation. A numerical procedure for solving this equation along with the
other governing one dimensional equation uses the novel approach of first
locating the sonic throat position and then integrating the equations
upstream. Several test cases are presented which include viscous mixing for
the first time. This method should provide more reliable calculation
procedure for these flow fields than now exists.
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SECTION 2
INTRODUCTION

Detailed understanding of jet and rocket engine exhaust flow fields is
required in a wide variety of Air Force space and missile programs.
Predictions of infrared signature, radar cross section, electromagnetic wave
attenuation, and production and dispersion of noxious pollutants are examples
of the exhaust system properties which are fundamental in both conceptual
systems studies and actual design and development programs. These exhaust
properties are the subject of a broad area of study known as plume
phenomology- a multidisciplinary study encompassing the sciences of fluid
mechanicg, chemical kinetics and optical radiative transport theory. Often
system design requirements and programmatic study definitioné require state of
the art or perhaps beyond predictive capabilities in each of these disciplines
to provide the desired information and definitions. This research program was
aimed at extending the state of the art of fluid mechanical prediction
techniques while keeping in mind how these advances would fit in the broader
overall plume phenomology program.

Plume fluid mechanics is the underlying physical science in plume
phenomology as the spatial distribution of thermochemical properties it
defines provides the structure upon which chemical kinetics and subsequently
radiative transport are predicted. The main area of interest was the fluid
dynamics of multiple nozzle exhaust systems. This study was aimed at the
inviscid structure of this flow as it forms the "skeleton" upon which is built

the complete flow field inciuding the turbulent (reacting) mixing layer and




viscous far field. This portion of the effort was therefore the study of
inviscid three dimensional supersonic flow fields containing complex shock
systems., Plume flow fields can contain Mach discs and hence regions of
subsonic flow. Understanding and modelling of these phenomena was a second
area of study.

% The flow field created by the exhaust of a muitiple nozzle exhaust system
L = is a complex three dimensional flow. The inviscid flow defines the shock wave
a ) structure of a plume which is of prime importance in predicting plume

observables. The shock waves are responsible for both local sharp increases

- ' ' in temperature and pressure and far field temperature increments. The far
field effect is a product of the entropy rise (total pressure loss),
associated with the sﬁock waves, which persists downstream showing up there as
an increment in temperature above the isentropic far field temperature. Both
cptical radiation and chemical kinetic processes are governed by equations all
of which contain "Arrhenius" type exponential factors [exp (-B/T)]. 1In the
case of optical radiation B is the second radiation constant divided by the
wavelength, The "characteristic" temperature B of these processes is
generally high so that chemical activity and radiative source terms are most
prominant in regions of high temperature. In cases where B is much larger
than the maximum temperature the regions of high chemical reaction or
radiative emission reduce to extremely thin sheets. Thus the shock wave
structure which is the primary factor in determining both local and far field
temperature levels is a central determmining factor in chemical activity and
optical radiation. For example, it is clear from many axisymmetric flow field
studies (c.f. Ref. 2-1) that shock structure and paaks in plume IR station

radiation are highly correlated. In Ref. 2-2 the central role of far field

i




temperature on plume radiation was demonstrated clearly. [t is for these
reasons that detailed predictive capabilities of the three dimensional flow
and shock structure were sought for the multiple nozzle flows.

The pursuit of solutions to the three dimensional plume flow fields
requires the numerical solution of the Euler Equations. For supersonic f1ows

these are a set of hyperbolic partial differential equations which forms an

el

S initial value problem. These problems are suited (in theory) to straight
forward marching numerical solution techniques. Experimental evidence (Ref.
2-3) showed that there were at least three and most probably more shock wave

configurations possible for twin nozzle flow fields. The specific

&

configuation being determined by individual nozzle exit properties, nozzle

spacing and background pressure and flow properties. The full diversity of
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flow configurations possible may be very broad and include many configurations
not yet observed. For two reasons it was deemed desirable to seek numerical
solutions of these flow fields in which the shock waves were "fitted". That
is, in the calculation procedure the shock wave surfaces are considered to be
discrete discontinuous surfaces which are tracked as part of the solution.

The first reason derives from the discussion in the previous paragraph.
Optical and radiative transport equations are extemely sensitive to
temperature so that the most accurate temperature predictions are desireable.
Secondly, the alternative approach "shock capturing" produces a shock wave in
a two dimensional flow that is portrayed in the solution as a dispersed

compression spread over three to five mesh intervals. There are generally

overshoots and undershoots involved in the flow quantities and the soiution in




the neighborhood of the shock wave is therefore unreliabie and contains order
unity inaccuracy. The multinozzle plume is a three dimensional flow
containing shock intersections which would likewise have five by five mesh
regions of questionable accuracy. Therefore it appears that with the complex
shock structure that exists in the subject flow "shock capturing" would
produce results that either (1) had an inordinate percentage of mesh points
inaccurate because of nearby shocks or shock intersections or (2) required an
inordinate number of mesh points to cirmcumvent this problem.

The only previous complex three dimensional calculations (Ref. 2-4)
employing fitted shock waves was for space shuttle type configurations in
which the general shape and topology of the shock pattern is known. In that
case very elegant .ri precise mapping techniques were brought to bear on the
problem to simplify the computer program logic. Since the shock wave surface
configurations for the multinozzle plume flow fields is not known precisely
and can take on any one of a number of general configurations a more general
numerical technique was pursued. This is referred to as the floating "fitted"
shock wave technique and, in fact, employed floating discontinuties and
singularities more general than shock waves. In this method (cf. Moretti
Ref. 2-5) the shock wave surfaces are not mapped to the boundaries of
computational domains, rather they are permitted to traverse a relatively
stationary computational grid. In theory the scheme does not require a priori
knowledge of the shock wave configuration and so would be ideal for the
problem at hand. The price for this generality is very heavy and two fold.
First the computer logic is extremely complex as it must anticipate a large

number of geometrical configurations and combination of configurations. And,




secondly, the details of the three dimensional phenomenon must be understood
so that local solutions can be incorporated into the flow field. For example,
in this "fitted singularity" approach the exact local solution for the shock
intersection with the plume boundary was incorporated in the solution. The
exact details of the reflected Prandtl Meyer expansion wave and sonic nature
of the impinging shock are employed in a special cell calculation. This
singular point was free to traverse the computational mesh as the solution
progressed and pass from one cell to the next. In this way the calculation
procedure is similar to finite element methods with the added feature that
the cell containing this singularity changes automatically as the shock moves
and the calculation proceeds. Unfortunately there are several other
singuiarities which are not presently understood that must be modelled to
accurately predict the three dimensional flow fields. One of these occurs
when two three dimensional shock surfaces intersect and subsequently develop
into an irregular reflection. This problem was studied theoretically and a
qgualitative description of the flow field development was derived employing
hodograph techiques.

The solution of plume flow fields with Mach discs open up an entirely new
set of requirements for numerical calculations and theoretical assessment.
The exhaust gas flow fields, aside from regions downstream of Mach discs, are
supersonic and as such are governed by hyperbolic partial differential
equations. These equations have solutions which at any point can be expressed
solely on the basis of flow properties upstream of that point. Therefore, the
numerical solution of these equations proceeds, at least in principle, by a

step by step or marching procedure. The flow downstream of Mach discs on the




other hand is subsonic and as such is governed by elliptic partial
differential equations. The solution to these equations at any point depends
on the solution at all neighboring points both upstream and downstream. Thus
the solution at any specific point is related to all the boundary values of
the flow properties surrounding the subsonic region. The plume containing a
Mach disc is thus a mixed type flow containing regions of both subsonic and
supersonic flow that is similar in many ways to more familiar transonic flows.
These flows are computed numerically by overall relaxation schemes (cf. Ref.
2-6.).

The Mach disc flow field has a critical property that was exploited by
Abbett (Ref. 2-7) to explain the determining factor for the shock triple point
Tocation. He observed that the flow which passes through the normal shock
portion of the Mach dis¢c is subsequently accelerated downstream to supersonic
velocities. This subsonic/supersonic stream tube is analogous to a De Laval
nozzle with a choking or saddle point singularity condition at the throat.

The location of the Mach disc itself is determined as that position which is
compatible with a smooth acceleration through the sonic singularity. An
important approximation which greatly simplifies the solution of plumes with

Mach discs was given by Abbett (Ref. 2-7) and later employed by Salas (Ref

2-8). The subsonic portion of the flow field is approximated using one

dimensional flow analysis. The location of the Mach disc is estimated and the
subsequent supersonic outer flow and subsonic one dimensional flow is
calculated. The unique solution is determined by finding the location of the
Mach disc which results in sonic velocity occurring at the same point as the

minimum area. Several possible Mach disc locations are employed to iterate
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and determine a bracket for the possibie location of the Mach disc. This
method has been used (Salas Ref.2-8) with success in the past to determine a
range of plume flow fields with Mach discs. However, the method has several
drawbacks. It does not provide any theoretical explanation of the
relationship of the solution to overall flow properties, it does not include
viscous effects, and it has questionable numerical reliability.

The forward integration of the subsonic equations is a tricky procedure
at best and is questionable. The set of equations governing the subsonic
streamtube has a positive eigenvalue. Thus it possesses exponentially growing
solutions (unstable). Compounding this fact, the exponential factor is
proportional to (1 - Mz)‘1 so that as the sonic singularity is approached
forward marching numerical procedures become useless. In view of the rapid
changes in the solution near the throat a ccmpromise must be struck between
accuracy and the ability to generate solutions at all. In the present work a
solution procedure is developed which resolves this dilemma. In the inviscid
case the sonic throat location is determined first and then the equations are
solved by integration in the upstream direction,

The analysis which is developed leads to a central governing interaction
equation. This equation coupled with the familiar one dimensional flow
equations and the supersonic flow equations for the outer plume stream help to
delineate the underlying processes driving the solution. The strong
interaction between the subsonic flow which passed through the normal shock
portion of the Mach disc and the supersonic flow which passed through the
oblique shock is evident through a term which is related to the Reimann

jnvariant on the downward running characteristics. Thus the explicit effect
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of the plume outer boundary properties on the Mach disc solution is made clear
for the first time. In addition viscous mixing between the two streams is
incorporated into the analysis via a simpie one dimensional analysis. In the
inviscid case determination of the exact location of the sonic throat is
possible based on an estimated supersonic flow and an assumed location of the
shock triple point. In the viscous case a further iteration is necessary.

In the following section a qualitative analysis of the multinozzle plume
flow field is discussed. The various three dimensional features of the flow
are pointed out in the context of the overall flow structure. Section 4
reviews the relationship between the plume fluid/thermochemical distributions
and the resulting IR signature. The mathematical relationship between optical
emission and flow properties is derived. In Section 5 the floating fitted
shock numerical technique is outiined and the three dimensional boundary point
calculation is described. A samp]e calculation for a simplified geometry is
presented. Section 6 presents the study of the intersection of two three
dimensional shock surfaces. Section 7 briefly describes an alternate new
method for finite difference calculations which might reduce the enormous
logic load on the fitted discontinuity programs. Section 8 contains the

discussion, analysis and numerical computations for the Mach disc flow.
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SECTION 3

STRUCTURE OF MULTINOZZLE PLUME FLOW FIELDS

The structure of the multinozzle plume flow is dominated by complex three
dimensional flow phenomenon. These processes are not simply the extension of
familiar two dimensional supersonic flow situations into a third dimension.
Rather they are new and peculiar to three dimensional flows and as such are
basically unknown to analysts. Therefore the ability to accurately model and
devise numerical schemes and their associated computer codes rests heavily on
first developing some understanding in these areas. There are two basic
situations that can be identified. The first and most striking is the problem
of the intersection cf three dimensional shock wave surfaces. The multinozzle
plume flow field contains several shock wave surfaces and these invariably
intersect. The subseguent development of the shock pattern is complex and
will be discussed in detail in a later section. Another situation peculiar to
three dimensional flows occurs when there is an abrupt change in geometry or
topology in the flow (i.e. transition of a shock reflection from a regular
reflection to a Mach reflection). This brings about an initialization problem
which is analogous to the flow at the leading edge of a wedge or the point of
a cone. These latter two are wg]l known two dimensional supersonic flow
situations which have cataloged solutions. We call on our knowledge of these
catalogs to initialize or reinitialize two dimensional (or axisymmetric) flow
fields when there is an abrupt change in geometry (wall angle). These
catalogs do not exist in three dimensional flows. Beyond that the nature of

the solution is not known in any of these situations.
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In order to study the structure of the multinozzle plume flow field the
structure of the individual undisturbed exhaust plumes is first examined. Each
exhaust plume is axisymmetric and underexpanded. Figure 3-1 is a schematic of
one of these plumes. Supersonic exhaust flow leaves the rocket nozzle at the
exhaust plane. The ambient pressure at the exit plane is lower than the
exhaust plane pressure and the exhaust flow expands at the nozzle 1ip so that
the pressures of exhaust and ambient gases are matched along the plume
interface. The barrel shock forms in the single nozzle plume because
expansion waves (upward running characteristics) in the flow reflect from the
(near) constant pressure plume interface resuiting in reflected compression
waves. These eventually focus to start shock system (B1){see Fig. 3-1(a)).
The expansion waves which start this process can arise in the conical like
source flow leaving the nozzle, however, even a uniform parallel exit flow
nozzle will produce the same result. The upward running characteristics
leaving the exit plane become expansion waves as they cross the Prandtl Meyer
expansion fan at the nozzle lip because the flow is axisymmetric and spreading
laterally. The axisymmetric nature of the flow causes the wave strength of
the Bl shock, Figure 3-1{b), to increase as it progresses downstream and
approaches the axis of the plume. A Mach disc and reflected shock system (B2)
develop downstream of the original barrel shock Bl. The flow behind the Mach
disc is subsonic so that the location of the disc depends on the pressure
distribution and mixing processes downstream of it. Section 7 will discuss
this portion of the flow field in detail. This is in distinction to the

remainder of the flow which is supersonic and where there is no upstream

influence. This inviscid flow pattern is well understood and several computer
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codes are available (in varying degrees of approximation) to predict it (Ref.
3-1, 3-2).

; It is quite informative to investigate the nature of the impingement of
two uniform jets before considering the complete problem of the impingement of
two underexpanded plumes. This flow pattern, outlined schematically in Figure
3-2 is expected to have two shock wave systems. The impingement shock (I) and

k ) "~ the recompression shock R. In the side view the I shock appears basically as {

i ;‘: expected from a two dimensional pattern. The impingement shock turns the

5. oncoming flow parallel to the symmetry plane. A complex process takes place

at the intersection of the plume boundary and the I shock. Based on work by 4

Hunt and coworkers (Ref. 3-3, 3-4, 3-5) the discontinuous boundary pattern

sketched in Fig. 3-2 is expected. These references deal with normal

b il

impingement of uniform jets; however, the interaction of the I shock and the

T

plume boundary is locally equivalent to that when viewed in a coordinate
system parallel to the shock/boundary intersection. The flow field is :
projected onto a plane perpendicular to the intersection line (Fig. 3-2(b)).
b The component of velocity parallel to the intersection line is constant in the
neighborhood of the intersection line because (a) it is parallel to the shock
%‘ : wave and is hence unaltered by it and (b) is locally parallel to the plume

» boundary both upstream and downstream of the impingement shock. The pressure
at points A and D are matched. Downstream of the impingement shock the
pressure at B is greater than at A and therefore greater than at D.
Therefore, an expansion fan emanates from the plume boundary at the point of
impingement to cancel the pressure rise due to the I shock wave (Station i,

Figure 3-2(a)). The required pressure match downstream of the shock demands

i 3-4




Bt o et i S

S
‘
[N
|
3
]

. 0 -
p
/
/
4
|
R \
{ \
! \
M ~——
4
A
~
~
~ ~
M> 1 ~ .
~ | ~ —— CROSS-SECTIONS

~Q g-_—\ R
~— SYMMETRY PLANE

0 1+ 2 3 4 5

SIDE VIEW

(A) ISOMETRIC AND SIZE VIEW OF OVERALL FLOW
2193-002D(1/3)

Fig. 3-2 Schematic Flow Field for the Impingement of Two Uniform Plumes (Sheet 1 of 3 )




BOUNDARY

7

.

. -
oS
i )
; 4
N B

2193-002012/3)

PLUME
BOUNDARY

EXHAUST GAS /
-— /
/
/

IMPINGEMENT - / AMBIENT
SHOCK / GAS

/ ———

/

STREAMLINE \

PROJECTION OF PLUME FLOW FIELD IN A PLANE PERPENDICULAR
TO THE INTERSECTION LINE

(8) DETAIL OF THE FLOW PATTERN AT THE INTERSECTION OF THE
IMPINGEMENT SHOCK AND PLUME

Fig. 3-2 Schematic Flow Field for the Impingement of Two Uniform Plumes (Sheet 2 of 3)




e i M

oA

coTT ST TRy ATt
<

that at the point of impingement there is at least sonic velocity, relative to
the intersection line, to support a Prandtl Meyer fan. At Station 2, a new
feature develops in the flow-expansion wave fronts stretching in three
dimensions interact with the constant pressure boundary giving rise to inward
moving compression wave surfaces that coalesce to form a recompression (R)
shock system. A schematic of this detail is shown in Fig. 3-2 (c). This
coalescence is completely analogous to the formation of the barrel shock (B)
system in the axisymmetric case. Subsequently, (Station 3-5) the R shock
system shrinks in size and grows in strength as it approaches the plume
center. Another way of viewing the overall impingement process is to consider
that the impingement shock by elevating the pressure of a perfectly matched
plume creates an underexpanded jet which subsequently expands laterally giving
rise to the shock pattern familiar to underexpanded plumes.

The flow pattern associated with the impingement of two underexpanded
plumes, in general, contains all three shock systems: the barrel shock, the
impingement shock and the recompression shock. These shock surfaces propagate
across the plume flow fields, interact and give rise to subsequent generations
of shock surfaces. It becomes narder ahd harder to identify each shock
specifically in succeeding generations. Many shock configurations are
possible depending on the relative strengths of the three systems and the
order in which they intersect. Three observed configurations will be
discussed. Each flow schematic is followed by a corresponding glow photograph
(Ref. 3-6).

In the weakest type interaction (Fig. 3-3) the flow pattern is initially

that of two individual plumes. At distances less than the first Mach discs
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the plumes appear almost as two individual plumes in the top view. The first
Mach cell is only slightly distorted by the I shock (see top view). In the
top view the impingement shock seems to merge with the barrel shock and
deflect so that the Mach discs are not quite normal to the nozzle centerline.
The next major shock pattern occurs downstream of the Mach discs in the
central portion of the flow between the exit of the two nozzles. The R shocks
{side view, Fig. 3-3) from the upper and lower portion of the flow intersect
to form a wedge shaped shock pattern in the flow. The leading edge of this
system is cut off (point a in top view of Figure 3-3) as it is intersected by
the reflected barrel shock downstream of the Mach disc. The small features
adjacent to this central pattern (see top view of glow photograph Figure 3-3)
seems to be created at the intersection of the reflected barrel shock and the
recompression shock at point b shown in the side view of Figure 3-3.

At lower background pressures the initial expansion at the nozzle Yip is
greater and the plumes impinge at higher angles increasing the strength of the
impingement shock. Figure 3-4 is an example of a moderate interaction where
the impingement shock strength is increased to the point where it cuts off the
barrel shock system before the formation of the Mach disc associated purely
with the barrel shock. In this case downstream of the B/R intersection (top
view) the R and transmitted B shock intersect in such a way as to create a
normal shock (Mach disc) in the center of the flow. In the strong interaction
case (Fig. 3-5) the impingement shock rapidly traverses the plume and diverts
the B shock sharply toward the symmetry plane. This transmitted B shock
reaches the symmetry plane (top view) at point a while the R shock {side view)

is still out near the plume boundary. As the B shock system reflects from the
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Fig. 3-4 Flow Pattern of Underexpanded Twin Plumes, Intermediate Interaction
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symmetry plane a V shaped trace is created in the side view (Fig. 3-5).
Subsequently this reflected B shock intersects with the R shock surfaces
producing an irregularly shaped leading edge because both these shock surfaces
are not planar (Fig. 3-5, station 2).

The three basic flow patterns described most probably represent only a

fraction of the possible flow configurations. There are likely many

variations of these patterns and others not yet observed. For this reason any
computational scheme chosen to pursue solutions of these flow fields cannot be
of the type that is constrained by geometrical and/or topological

limitations. The scheme must allow for a wide variety of geometrical patterns
and must be flexible enough to include as yet unknown and unanticipated
configurations. A computational technique satisfying this constraint is
discussed in the Section 5. The method produces accuracy and maintains
efficiency by incorporating detailed local flow solutions wherever possible.
Thus shock waves and slip surfaces are portrayed as discontinuties which are
tracked individually and locally satisfy the appropriate jump conditions.
There are other three dimensional flow features in these plumes that must
likewise be modelled in the small by their local solutions. Two such
solutions required for the multinozzle nlume flow field have not been analyzed
in the past. A discussion of the nature of the 1ift off of the impingement
shock and the transition of the regular reflection to a Mach reflection
process in the intersection of two three dimensional shock surfaces is

presented in Section 6.
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SECTION 4
RELATIONSHIP OF IR SIGNATURE TO PLUME PROPERTIES

There is a variety of programs which require knowledge of rocket niume
flow fields. Detailed spatial maps of exhaust temperatures, pressures and
chemical species concentrations are required as input in electromagnetic
attenuation codes, aircraft or spacecraft impingement analysis and IR emission
codes for both heat transfer and optical signature evaluations. These
calculations are often so expensive to perform that parametric analysis or
calculation of a large member of data sets is out of reach. For that reason
it is difficult to answer guestions pertaining to the variation of plume IR
signature as a result of systematically changing the many input parameters.
Normal system design procedures become extremely costly or have to be
bypassed. The main concern in this section of the study was the effect of
multinozzlie plume flow fields on the IR signature of a missile. The results
were presented in detail in Ref. 4-1 and will be reviewed briefly here,
Analytic formulas were derived which relate IR signals to various plume
properties thus alleviating to some extent the problems in parametric
analysis. These relationships point out the allowable errors or uncertainties
in plume models that lead to desired levels of accuracy in overall IR
predictions. It was determined that there are several other processes besides
multinozzle plume impingement that must be properly accounted for if accurate
IR predictions are to be achieved over the entire altitude range . The
analysis is best suited for optically thin plumes, however, as in other
situations the conclusions will probably have a much broader range of

applicability.
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The underlying source term in all optical radiation calculations is the
Planck Black Body Function., The radiant emission from elemental gaseous
sources is proportional to the product of that function and the absorption i
coefficient of the IR active molecule. The magnitude of the Planck function
is sensitive to temperature and becomes increasingly so as the temperature
decreases. This sensitivity is greater the shorter the wavelength as shown in
Fig. 4-1 where the logarithm (base 10) of the Planck function multiplied by AS
is plotted versus temperature. Temperature sensitivity is graphically
depicted in Fig. 4-2 where the temperature increment necessary to produce an
increase in the Planck function by a ratio of 2.71, 1.65, and 1.28 (e, 91/2,
e1/4) is shown for the range 400-2000 K. In Fig. 4-2a, for example, for 2.7
microns at 1000 K, a temperature increment of 100 K produces an increase in
the Planck function by a factor 1.65; at 2000 K, the same increase requires a
temperature increment of 380 K. In fact, the same accuracy at 800 K reguires
a temperature accuracy of 60 K. Figures 4-2b and 4-2c show the temperature
sensitivity for shorter and longer wavelengths, and, as before, the decreasing
sensitivity with increasing wavelength is shown. Below the abscissa in Fig.
4-2a there is an approximate altitude corresponding to the temperature axis.
This correspondence is approximate but serves as a reasonable guide. It is
interesting to note that uncertainties, errors in calculation or variations in
any plume parameter that lead to temperature increments have much less of an
effect at Jow altitudes. Thus a change in temperature at sea level of 400 X
(all other quantities fixed) would only produce a change of the Planck
function by a factor of 1.65. On the other hand at 50 km altitude there is a .

factor of 2.71 for only 150 X variation. This critical temperature dependence
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requires plume models to have very tight contrals on the approximations
involved in the prediction of plume temperature levels in order to achieve i
accuracy over the entire altitude range.

A variety of processes control the temperature levels in the plume
gases; expansion to background pressure, turbulent mixing of the exhaust and {
ambient gases, and afterburning chemistry in the mixing between the exhaust
gas and ambient stream. The mixing process is of direct concern because it:
adds a temperature increment due to viscous dissipation and controals the
geometric size of the radiating region. At low altitudes, an equally {
important contribution to the radiation levels is the afterburning chemistry,
which not only adds a temperature increment, but can also be responsible for
the consumption or production of a radiating species. The influence of both 1
mixing and afterburning has been the target of other studies and will not be
focussed on here. The inviscid expansion process of the exhaust gas to the
ambient pressure levels becomes more and more significant as altitude

increases. There are two principle processes that cause major changes to the

temperature that would be achieved via an isentropic inviscid expansion from
the nozzle exit to the background pressure. The primary deviation is due %o
shock waves in the plume flow which cause large entropy increases that persist
into the plume far field. These shock waves result from the adjustment of tne
underexpanded nozzle flow to the local pressure of the surrounding fluia ana
the impingement of individual exhaust plumes on each other in the case where
the vehicle has more than a single engine. The former case is well understood
because it is an axisymmetric fliow, while the latter is a complex

three-dimensional flow that was the object of this research program.
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In order to properly account for large pressure ratio expansions in

multinozzle plumes all flow processes beyond shock heating that influence the
temperature field should be examined. The role of nonideal thermodynamic
properties of the fluid in the inviscid expansion has to bg properly addressed
in any plume model. The temperature difference between ideal and nonideal
expansion increases with overall pressure ratio and hence altitude. The
nonideal expansion process reduces the plume core temperature and therefore
further compounds temperature sensitivity. Two common assumptions that must
be reviewed are: (1) the exhaust medium is calorically perfect and (2) the
exhaust composition is frozen. Exhaust gases can contain substantial mole
fractions of water vapor and/or carbon dioxide that exhibit changing values of
specific heat over the entire temperature range (500-2000 K)., Other triatomic
molecules can exhibit similar specific heat temperature dependence over these
temperature ranges. This results in a substantial temperature decrease due to
the difference between a frozen composition and the more widely emploved
corstant ¥y 2xpansion. In aadition all finite rate chemical reactions cannot e
considered frozen. Thus changing composition must be examined.

Assessment of the gross effects of multiple nozzle self impingement ann
the real gas expansion process on the plume IR signature was achreved v a an
analytic analysis derived and described 1n detai! *n Ref, 4-1. 7he analyses
is for optically tnin conditions and as such does not account for se'f
absorption of the outer cooler regions of the plume. The mathematical

analysis for the far field is based on standard methods which take advantaae
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of the exponential nature of the Planck function. The results of the analysis
was tested against computer generated plume signatures. Two model piumes were
generated and the resulting station radiation was computed using GRUMPLUME
(Ref 4-2). These results were used to show that the computed station
radiation was proportional to the derived formulas.

A schematic of the model plume flow field is shown in Fig. 4-3. The near
field multinozzle impingement and the subsequent expansion to ambient pressure
are assumed to have taken place upstream, The model studied here is a far
field model and does not address the emission from the regions near the exit
plane. The initial impingement region is highly nonuniform and requires a
much more complex formulation that would not be expected to yield simple
relationships. Two plumes were investigated corresponding to altitudes of 30
and A0 km with start line temperatures of 383 K and 745 K respectively anc
water vapor mole fractions of .33 and .32. The computed centerline
properties from GRUMPLUME are shown in Fig. 4-4,

The station radiation predicted for these two test cases is shown
dlotted in a normalized form in Fig. 4-5. The striking feature of the result
is that in the initial region of the far field the station radiation is a
linear function of distance. The results of the analysis are as follows. in
the initial region of the far field the initial value of the station radiat:on

3t z = 0 is proportional %o the arnduct of the “lanck function at the
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initial temperature and the initjal value of the mole fraction of water vapor
(the radiating species) . This formula correlated the results very well as

shown in the table below.

h 3,(0) J,(0)
%1,0(0) Ny °(0)

50 2.678 3390

60 .328 3310

(all units arbitrary)

The result is only strictly applicable for the distribution given by the model
plume. In a more accurate fluid dynamic model of the plume the initial
temperature profile would not be constant resulting in a more complex
relationship. In the plume far field, where the centerline temperature and
species mole fraction of water vapor decay both axially and radially the
results are (see Ref. 4-1 for details of the derivation)

i, a tzO(Q> NAO(TQ) PTQ/<d2T/dr2)Q
The station raciation is proportional to the product of mole fraction of
radiating species, Planck function, static pressure and temperature and
divided by the second derivative of temperature all evaluated at centerline
conditions. The validity of this correlation is demonstrated in Fig. 4-6
where the entire series of points in the far fieid of both plumes are plotted
versus centerline temperature. All the points fall within approximately 5% of

the value 1.45,




Two plumes are sketched in Fig. 4-7: a single engine axisymmetric plume
and @ multiple engine three-dimensional plume. The shock heating in the
axisymmetric case gives rise to a very highly peaked temperature profile
because the initial shock strength is weak and increases rapidly as it nears
the axis. The fraction of plume mass flow the shock intercepts when it is
strong is quite low because the streamlines are continuously diverging from
the axis in the plume core. In the multiple engine case, a strong shock
caused by the plume impingement intercepts a large fraction of the exhaust
flow near the exit plane. Therefore, the temperature profile downstream will
have a flat shape and a larger fraction of the exhaust mass flow will be
heated to high temperatures. In the analysis presented the effect of
percentage mass flow affected by shock heating was not explicitly addressed,
however, the station radiatiom will be proportional to that percentage. In
the previous discussions it has been established that the station radiation is
directly proportional to the Planck function basad on the peak temperature.
Figure 4-3 demonstrates what can be expected to be the variation of Planck
function due to shock heating. The ordinate is the ratio of Planck function
at shock heated temperature to Planck function at the isentrnpic axpansion
temperature. The abscissa is the isentropic temperature achieved by an
expansion from 2000 K. SZelow this is an additional scale showing-the
corresponding altitude. Figure 4-¢ includes a series of curves for an antire

range of total pressure losses. The greater the total pressure ioss the

higher the temperature and hence the higher the ordinate. Notice the size of
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a factor of 2 shown on the chart. It is clear from this chart that multiple
nozzle impingement effects become progressively more influential as altitude
increases. At low altitidues, below say 10-20 km, the individual plumes
interact only weakly so that there is little additional shock heating
developed and Fig. 4-8 shows that shock heating has diminishing influence at
those altitudes in any case.

The sensitivity of the Planck function to temperature variations
requires tight controls on all processes both numerical and physical that lead
to error beyond the shock heating caused by multiple nozzle self impingement.
There are a variety of considerations that are discussed in some detail in
Ref. 4-1. To complete the discussion in this section the role of nonideal
thermochemical properties will be examined. In Fig. 4-9 the temperature
achieved by expansion of a typical exhaust gas composition to ambient pressure
is plotted. Thrée isentropic expansions are shown. Two are for ideal gases
with¥=1.22 and Y = 1.3 (¥ is the isentropic exponent Cp/CV) and one for
frozen composition. The nozzle exit plane value of -¥ is 1.22. It is evident
from Fig. 4-9 that above an altitude of about 20 km the assumption of a
constant value of ¥ will overpredict exhaust gas temperatures. The frozen
composition expansion passes smoothly between the bounds provided by the two
constant Y expansions. The frozen chemical composition expansion process is,
therefore, a more desirable feature to employ in an accurate plume model. The

accuracy of the frozen expansion process must be examined in the light of the
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fact that chemical reactions do not necessarily freeze out even at higher

altitudes. Figure 4-10 (Ref. 4-1) displays the Damkohler number as a function

of altitude for the reaction set shown. Reactions 4, 5, 6, 9 can still be
active at the high end of the altitude range. The possible shuffling of
chemical species by these four reactions must be examined to determine if they

can substantially alter the temperatures achieved by the frozen expansion.
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Tabie | Typical Reaction Set For Amine Fuei Exhaust
kg = Ag exp (Bp/RT)/ TN
R An N 8n
v 1 0 + 0 + M = 02 + M 1.000€-29 1.0 0.0
. 2 0 + H + M = OH + M 1.000E-29 1.0 0.0
N 3 H - OH + WM = H20 + M 2.000E-28 1.0 0.0
" 4 OH + OH = H20 + O 1.000E-11 0.0 1000.0
5 OH + H2 = H20 + H 4.000E-11 0.0 5500.0
. 8 O + H2 = O4 + H 3.000E-11 0.0 3200.0
: 7 H + 02 = OH + O 3.000€-10 0.0  -16500.0
. 8 coO + 0 M = CO2 + H 5.000E-29 1.0 -4000.0
) 9 CO + OH + CO2 + H 5.000E-13 0.0 -600.0
10 H + H + M = H2 + M  5.000€E-29 1.0 0.0 1
: 11 ¢C02 + 0 = CO + 02 3.200E-09 0.0  -54200.0
* 12 H2 + 02 = OH + OH 1.600E-10 0.0 -70400.0
K!
i
. 107
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108
S 10
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Fig. 4-10 Damkohler Number for Reaction
Set as a Function of Altitude
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SECTION 5

NUMERICAL CALCULATION PROCEDURE

The variety of possible structures of the multiple nozzle plume
impingement flow field requires that the computational procedure employed in
their analysis be as independent of geometry as possible. The code must allow
for a wide variety of shock configurations and have the flexibility to allow
for as yet unknown additional geometries. For this reason the "floating
discrete shock fitting" approach originally devised by Moretti was chosen
(Reference 5-1, 5-2). A two dimensional version of this method was empioyed

successfully by Salas (Reference 5-3) for a complex two dimensional scramjet

flow field containing many shock waves. For the present problem these methods
were generalized to compute three dimensional steady inviscid flow. Three

types of mesh points are recognized: interior, boundary and discontinuity. The
computational mesh is a fixed Cartesian grid where the shock surfaces and
pressure boundaries propagate freely across the grid. The shock and pressure
boundary surfaces are portrayed as discontinuity surfaces and, for example,

the complex impingement shock/boundary interaction is modelled in detail as a
point singularity.

The discontinuity surfaces are considered on a cell by cell basis so that
the computer code must contain the necessary logic to perform the correct
caiculations in all possible cases. Because the cross angle of the
discontinuity surfaces must be detearmined to compute propagation velocity the
discontinuity cells must be connected. Thus the computations necessary for
sach discontinuity cell cannot be done independent of oroperties in
neighboring cells. The number of possible configurations is Targe but
manageable for single snock surfaces because it is possible to devise rules %o

cover a large portion of the possibilities and to identify and code for the

3-1




exceptions. When two shock surfaces intersact, tne geometric DJossidi’ities
and hence complexity increases enormously witn the atlanaant ‘ncreases
orogram logic. The marching step size is restricted <o mantain the same
configuration of discontinuity calls for eacnh step. At the and of 2ach sten,
if any of the discontinuities has reached a mesh point, it is c¢crossed ta *the
other side and all the necessary indicators wnich guide the pragram logic are
R reset to account for the new configuration.

The exhaust gas is considered inviscid, thermally and calorically pertect

and is governed by the three dimensional Euler equations. in Cartesian

* coordinates, the conservation of mass, momentum and entropy are !
': Uy = vy T Az * Y (uPy + vPy + wPy) = 0 (5-1.1)
i Uly + vuy * wuy + TPy = 0 15-1.2)

A Uvy * vy * Wy, + TPy = 0 {5-1.3)

uwy * va toWW, + TP

2 = 0 (5-1.4)

uSy + vSy + wSZ

where u, v, w are the Cartesian velocity components in the x, y, z directions

0 {5-1.5)

and P is the natural logarithm of the pressure, S the antrooy, 7 the
temperature, ¥ the ratio of specific heats and all thermodvnamic quantities
are non dimensionalized by the stagnation conditions (e.g., 94, P5,T,),

the velocity components with respect to the quantity,/577? and the
-] o

coordinates by the nozzle exit radius. The marching {time like) airection is

the z direction and the following two flow angles are introduced
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Fig. 5-1 Basic Notation Employed in the Finite Difference Mesh
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Forward Differences

x ajrection DEAL(V) = V(o+1) - ()
A X

. Y(J+R) = Y(J)

y direction OFY (V) J*R) :

Backward Differences

x direction oBX(V) =
Ax

y direction DBY(V) = V(d) - v({3-R)
ay

where Y is any Tlow gquantity and the squations define the symbols OFX, 2FV,
DBX and DBY. Combinaticns of forword and backward differencas for the x and y
directions is permitted in the pradictor step so long as it is r~eversed in
corrector sten. If backward diffarencas are amoloyed for both x and y in the
predictor step and forward differences in the corrector sten the new salues at
Z + AZ at point J depend only on tne seven mesh points bounding the =wo
shaded cells in Fig. 5-2. If there is a discontinuity, a shock wave for
example, in either of these shaded ceils, then the computation it ooint J must
be modified to account for it. The orientation of this "finite 4ifferance
molecule” dictates a computational Togic in terms of defining now mesh points
are affected by discontinuity cells.

Figure 5-3 shows a typical computational mesh denoting the mesh

numbering system and snowing a single continuous shock or discontinuity

£




surface. Three tynes of points are indicatad on the figure: intarior noints,
boundary points and discontinuity points. Bouncary 20ints ars those interior
points associated with a finite difference molecule (see ~ig. 3-2} whicn nave
a discontinuity passing through it and so cannot bSe computec 2mploying tne
standard intarior point calculation scheme. The staps involvea in oane
computational step are outlined in Fiq, 5-4. The necessity for s%tep 2 i5 %o
maintain the overall configuration, that is, 31} intarior Joints remain
interior points, boundary points remain boundary points “or >o0th the predictor
and corrector partions of the calculation.

In step 4 (Figure 5-4), the computation of the properties at the
discontinuity and boundary points of each cell containing a discontinuity 1s
considered 1ndividually. The discontinuity surfaces are considerad to ne
oriented so as to reccgnize the high and low pressure sides. The projection
of the discontinuity surfaces on the transverse or computational plane resul*s
in a continuous line (c.f., Figure 5-3). If this line is foliowed from a
prescribed starting point, for each cell, the discontinuity can enter on any
one of four faces and leave on any of the remaining tnree faces - giving a
total of twelve possible confiqurations shown in Fig. 3-3. In “he computer
pragram, for 2ach discontinuity c¢ell, tne propertias at the discontinuiiy
soint which is the entry point to the c¢ell are associated witn that cell. ‘for
each of tne twelve possible configurations for tne discontinui=y cells tne
computer code contains the necessarv logic to derermine ~N:ch mesh points are
soundary points and which discont nuity ooints are o ne calzulated, At any
step the code contains a *able of tne drscontinuity e s ang She nrogram

logic determines tne method A1 <4 <u'dt on “3r 2acm )F “ne nkngwn 2071ts. A

typrcal axamplie of 3 Jiscont nurty .20 5 srLwn 0~ Toqure 3.4, 1 3ngck
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Fig. 54 Flow Diagram for One Step Using Floating Discontinuity
Finite Differance Computar Program
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anters from the bottom face of <he ce2l! and Teaves through the top face. 7o
the right of the shock the flow is known (i.e. undisturbed free stream or
undisturoed plume). The code logic determines, for this configuration, tnat
the two points to be calculated associated with the j cell are mesh point J
and shock point Sj. The unknowns at Sj are the values of r, o, P ana S
on the high pressure side of the shock and the shock point velocity dfj/dz
where f; is the fractional distance of Sj from J {see Fig. 5-6).

The shock configuration shown in Figure 5-6 is the simplest
possible. Each of the discontinuity cells is a type 1 as defined in Figure
5-5. The Computation of the shock cross flow angle is computad by locating
the shock points on either side of the point of interest. This is achieved by
Tooking ahead and benind the discontinuity cell j and locating the snock
noints in cell j-R and j+R. In this case, the location of the shock point in
i+’ (j-R) isat y =Ay (y = -Ay) and x = fipAx (x = fiaAx) (x, ¥
both measured relative to the mesh ooint J). In other configurations where
cell j-R is type 4 or type 11 {see figure 5-5) the computation of the
location of the preceeding shock point follows a 4i<farent formula. Licawise
for the following point. In the configuration shown, the noint J is 3
boundary point and must be calculated accordingly. For each triplet of tvpes
of discontinuity points (in Figure 5-6 this is a l-1-1) a logic pattern is
designed to compute the shock c<ross angle correctly and to determinre wnich
p0int is a bhoundary point,

The calculation procadure used for discontinuity points and
boundary points is outlined below for a two dimensional flow-the extension of
these methods to tnree dimensions 15 str3aght forward geometrically put

requiras some analysis tertinent £o tnree Jimensional characteristic <heory




and will be discussed in subsequent paragraphs. Three ideas must be developed
in order to explain this procedure: (1) computation of characteristic
relationships using finite difference algorithms (2) siant marching steps and
(3) pseudo point values. Points A, 8 and C form the finite difference
molecule for the computation of the values at point N in a two dimensional
MacCormack finite difference scheme (Fig. 5-7). (Note that the intermediate
values employed in the predictor/corrector scheme are only notational
simplifications and that only values of properties at A, 8 and C are employed
in the computation of N.} The object here is to show how the values computed
by the finite difference calculation can be used to compute the characteristic
relationships at N without the need for interpolating the values at the

points denoted + and - which are at the foot of the characteristics (Figure
5-7). Dencte the velues at N computed by a second order finite difference
scheme to be ugp, wep, Prp, Sfp from which Ygp (v is ﬁhe ?randt!

Meyer angle) can be computed. The two characteristic relationships associated

with point N (second order accurate) are

downward wave  A8+Av=T Az (T =3%{T  -ry
upward wave ag-av =T az (T =:wr_ =1

. Favs cpa
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Fig. 5-7 Finite Differencs Molecule for Two Dimensionai Flow
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Fig. 5-8 Notation for Slant Step




e

Jhere T 1is the inhomogeneous or forcing term containing velocity

gradients out of the plane (c¢c.f. Ref. 5-5 for derivation of thesa

equations). Z=mploying the notation of Fig. 3-7, these reiationshins become

T Az +6_+

o
+
\S
=
1}

9 _VN:.[::.AZ+9 —yv

In the straigntforward appiicaticn of the method of characteristics, these two

equations are employed to solve for the two unkncwns 9V and ~ This

requires the interpolation of data to determine J_, . and r_ . 3ecause

the finite difference result ana the charactarist:c ~esu’'t MUSt de the same %0

second order

+ = - - =z T T “ + .
9y y=Taz+d =+ =rtan’ U Yoy 20
— -1 ‘
QN' ’y ‘FJ._AZ"'B‘_‘ T, T oean Jr::JzN:—_), - gy

Thus, the simple result at point N for the two characteristic relationshio is

By * Yy = tan Tl i+
NN Aza/veg) e
8. - v, = ran'l (Usn/Wen ) = ¥
N N FCOTED FD

which does not require any interpolation or any scheme other than the

orcinary finite difference algorithm used at any interior point.
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Figure 5-8 shows that (for the discontinuity point) the new values
desired at z + Az do not lie on the same value of x as point B, rather the
point N is elevated by AAx. The computation of this point is made simply by
forming a directional derivative from the governing equations. For any

system of partial differential equations

au _ , dU
ERET

where A and B are the matrices appropriate to the equations of interest and U

is the unknown vector. To compute the values at point N use the system

|l>

u

Qe (p A0

9z gx Az AZ/ox
where I is the identity matrix and dU/dz is now the derivative used to compute
point N from point B in Fig. 5-8 by a "slanted step."” The finite difference
scheme is applied to the right hand side of this equation using exactly the
same rules as are used at any interior point resuiting in a second order
accurate predication at N.

The final ingredient necessary for the boundary point calculation is
the pseudo or projected point, Figure 5-9a shows the typical confiquration
encounterad in the "shock between the mesh points" type calculation. In
general at station z the reqguired properties are known at mesh points A and B
and on the high pressure side of S the shock point. These points do not form
the standard equally spaced finite difference molecule. In order to use the
same algorithm that is used at all other mesh points, the finite difference
molecule shown in Fig. 5-9b is constructed. The values of the flow variables

at the point P are calculated by a simple linear extrapolation from the values

5 i LR e AT L e b i A il
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AR A

at A 3nd‘S. The value $t B is not used, This technique has the critical
oroperty that for geometries wherc paint S is very close to point 3 truncation
errors are not amplified in creating the value at ?. This molecule can he
shown to produce a first order rendition of the distribution of flow
properties on the mesh segment ABS, However, a simple comparison between the
Taylor series expansions employing properties at A, B and S with one employing
A, B and P shows that the error involved is, in the worse case,
(1/8) (Ozf/ axz)h2 (f being any flow property). Thus reasonably smail
errors are expected from this approximation.

The sequence of steps for calculating a typical boundary and shock point
{the flow upstream of the shock is known in this case) are 4s follows (refer
to Fig. 5-10): (1) the shock location at z+ Az (SN) is estimated based on the
known shock slope at S; (2) the flow variables at point P are computed: (3)
the finite difference molecule ABP is employed to compute the values at point -
N using the standard MacCormack scheme; {4) the slant step and same procedure ;
is used to compute the finite difference values of the new variables at SN;{5) |
these new values are combined to yield a single characteristic equation - in
this case

B - "y = tan ' {uzp/wepd - s

(6) the Rankine-Hugoniot equations and two estimates of the shock slope at SN

are used to calculate two solutions for the conditions behind the shock at SN: _1,

3
<
*
i

(7) assume linear variation between these two soiutions to derive a linear Fy

equation
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Fig. 5-10 Mesh Configuration for Floating Shock Calculation




for properties behind the shock; (8) solve the two equations from step (7) ana
step (5) for the shock properties at SN. The accuracy of the scheme is
further enhanced by correcting the location of the shock at SN based on an
average slope between S and SN and repeating the sequence 1-3 above.

The discontinuity point calculation procedure for three dimensional flow
requires additional analysis. The procedure presented for two dimensional
flow takes full advantage of supersonic flow theory. This theory provides a
direct relationship between the geometric flow angle 8 and the Prandt] Meyer
angle along characteristic lines. In three dimensional flow, there is no
simple direct relationship between flow orientation and Prandtl-Meyer angle.
The flow direction at any point is described by two angies, rand o for
example, and is not unique. In the past investigators (Refs. 5-6, 7, 8,9) have
employed "reference plane" characteristics to overcome this complication. in
this method, a plane is prescribed a pricri which is oriented in a direction
convenient to the calculation. That is, the direction chosen simplifies
program 10gic and reduces the need for interpolation to a minimum, The
components of the velocity vector in these planes are treated as two
dimensional flows and are evaluated based on a method of characteristics
analysis in the refesrence plane. Velocity components out of the reference
plane are computed by an auxiliary equation - usually the transverse momentum
squation. Velocity gradients and the transverse veloscity components appear in
the inhomogeneous 6r forcing term in the reference plane characteristic
equations. In the present caliculation procedure, a new method is described.
it 1s hased an a theagretical analysis which demonstrates that there are in

fact distinguished planes, 1n a local sense, in which tnhe flow 15 described by

equatians in two space dimensions.




{n three dimensional supersonic flow, the zone of dependence of a point
in the flow is the upstream Mach cone. <tach generator of this ccne is a
picharacteristic. [t was demonstrated in Ref. 5-10 that two of the infinite
number of bicharacteristics on this Mach cone play exactly the same role as do
the two characteristics in axisymmetric flow. These bicharacteristics are
along the intersection of the Mach cone and the osculating plane of the
streamline Figure 3-11. The osculating plane contains the tangent vector
and principal normal to the streamline. The normal to this plane is in the
binormal (or b) direction. There are no velocity components normal to the
osculating plane. In fact the equations of motion normal to this plane reduce
to dp/db = 0 (p is the static pressure and b is the coordinate in the binormal
direction). In the osculating plane there is the familiar relationship
between changes in flow angle and changes in Prandtl Meyer angle that exists
for axisymmetric flow. Only the gradient in the b direction of velocity
component in the 5 direction appears in the equations. The entire
computational <rheme devised for the discontinuity point calculation for “wo
dimensional ‘or axisymmetric) flows can be employed in the three dimensional
fiow in the osculating plane. In general the binormal direction is given by
7;==vp A—;-;;is ~he local velocity vector,q;is a vector parailel to the unit
vector by, Tnis formula is based on the properties that the b vector
he normal to both the tangent vector and acceleration vector of a fluid
element. 1 is tangent to the streamline and ¢p is parallel to the

N

acceleration vector. Thus the orientation of the’b vector or alternatively

the orientation of the osculating plane are determined along with the

solution.
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To demonstrate the use of this theory the three dimensional shock point
calculation is autlined neltow, Fiqure 5-12 shows a schematic of the shock
pnint calculatian, AlT flow properties are known at station z including the
shock velocizy *n +the y direction. The procedure follows exactly the steps
outlinea in “ne =w~ 11mensional caiculation described in the previous
paragraohs ~i%n tne ‘2l'owing additions. The shock position at all points at
2 - Az ar2 zomputed as 1 first estimate by simple forward integration. Thus

YSN = YS + [dY¥S,dz'az

where YSN (YS) is the value of the shock height at z + Az (z) on the vertical
grid line through mesh point B (N) and dYS/dz is the shock velocity in the y
direction at station z on the same grid line. After computing the new location
of the shock on each mesh line the shock cross flow angle can be determined by
a simple centered difference of the locations at SN * and SN ~ (see Fig.
5-12). The only unknown parameter for the shock geometry at point SN is
dYSN/dz or the shock speed at station z + Az. As in the two dimensional case
(step 6) two values are assumed for the shock speed. In-the 3D case the two
velocity vectors associated with these two assumed shock normals are used to

IAN

define the b direction (Fig. 5-13). The remainder of the calculation

procedure is identical with the 2D procedure. It is not clear that tnis is

/Q vector. The method is linked to the way the

only method for computing the
shock cross angle is computed. This is nonunique and the influence of

variations of this step on calculated results should be studied. The method
presented is self consistent and achieves accurate and reliable results when

combined with the rest of the computational procedure,




da¥
[:¥4

2 Z2+22

{al Crass Sections

AY

SN

SN \shock surtace

/

N

SNT

ibl Isometric View

Fig. 5-12. Schematic Diagram Showing Notation for Three-Dimensional
Shock Computation

5-24

N eyl

-0t o I e o — - -

A



SHOCK SURFACE

2193-0280

A
Fig. 5-13 Definition of the b Vector for the Shock Point Calculation
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A computation employing the three dimensional floating discontinuity
program was achieved for the flow field created by the impingement of two
uniform rectanqular jets. This geometry was chosen so as to minimize the
complexity brought about by nonuniformities in the underexpanded plume. The
geometry describing the initial calculation is shown in Fig. 5-14. Two
uniform Mach 3.0 plumes of rectangular cross section impinge at 30°.
Impingement shocks spread across the plumes (top view) to make the two flows
parallel, This results in pressure above the background, and the flow spreads
laterally (side view) to relieve this overpressure. The cross-section shown in
Fig. 5-14 is characteristic of the calculated results. The impingement shocks
are slightly curved and are bounded by the free jet boundary. The pressure
boundaries spread laterally in a vee shaped pattern. A typical cross section
from the calculation is shown in Fig. 5-15. (Only one fourth of the total
cross section is shown because the flow has bilateral symmetry). The flow
from the undisturbed plume passes downward through the impingement shock and
jumps in pressure. The impingement shock intersects the undisturbed plume
boundary in a complex interaction involving a sonic shock condition and a
sonic shock condition and a centered Prandtl Meyer fan with the combined
result of no pressure change along the pressure boundary. Figure 5-16 is a
schematic of the flow near that point. The flow is decomposed into components
tangential and normal to the shock wave/plume boundary intersection line.

(see Section 6 of this paper for detailed discussions relating to this type of
analysis). In the plane normal to the intersection line the shock wave is
sonic at the point of impingement. Attached to the impingement point is a

centered expansion which reduces the pressure hack to ambient. The

5-26

I v v

.
APy

ey




NOZZLE EXITS

M=30
ey
IMPINGEMENT
- SHOCK -
30° Tz 2
- b
//’/
TOP VIEW
-——
———— L ——— = e =
——— . e e e =
R S
SIDE VIEW
A IMPINGEMENT SHOCK
7 1N
/ N
’ N
4
} A
\\ /, ‘
N / l
/
'y
h o=
X
CROSS SECTION
2193-0290

Fig. 5-14 Schematic of Geometry for the Impingement
of Two Rectangular Plumas




e

UNDISTURBED PLUME

-
s UNDISTURBED PLUME

2193-0300

v =*""BOUNDARY
f L IMPINGEMENT
] B SHOCK
/ \ l':' IMPINGEMENT
| = SHOCK /PRESSURE
j | 7 BOUNDARY
] INTERACTION CELL
-
-
*
A
A AU PRESSURE
i | A BOUNDARY
1 ',I
v S
[ N
v ' P "
! | N ) s 1
A T
! | ' \ i "‘o |
| | . ' | I e
. I | B WA L % -
P/IPAMBIENT =2.59 2.23 192 165 1.36 x

Fig. 5-15 Typical Cross Section at 2 = 2.12 Including Isobars
for the Sample Caicuiation

£

e T




IMPINGEMENT +
SHOCK

INTERSECTION LINE

| SO

Fig. 5-16. Details of Impingement Shock/Plume Boundary Interaction




~

I

P}

rine T e

fundamental unknown in the calculation of this point is the speed of the
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impingement point. The calculation procedure is similar to ordinary shock
points. Flow properties behind the impingement shock are matched to the

interior flow by a characteristic relationship in a local osculating plane.
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This procedure is an approximation and must be examined in the light of the
more accurate flow solutions that are discussed in Section 6.

The isobars for the cross section in Fig. 5-15 show that the flow has
nearly the undisturbed two dimensional impingement shock value at the
centerline (see Fig. 5-17). The decay to background pressure takes place
across the entire flow and is most rapid in the vicinity of the shock/boundary
intersection point. Fiqure 5-17 shows the symmetry plane pressure profile and
the cross sectional view z = 2.12 (the plume half width is unity). There is a
region of near constant pressure developing at the outer fringes of the
pressure boundary as would be expected. There are some "wiggles" in the
pressure in this zone that are most probably due to the low number of mesh
points used in the calculation (Fig. 5-15 shows the exact mesh employed).
Figure 5-18 {a) shows the calculated development of the cross sections for the
impingement region as a function of distance downstream of the impingement
fine. Each profile is ten calculation steps from the previous; the first

being at Step 10. The pressure boundary develops into a pointed shape.

Fiqure 5-18 (b) shows the flow profiles superimposed on the computational '

mesh. The impingement shock, pressure boundary and interaction cell have

crossed many mesh points and have attained a variety of configurations with no
apparent breakdown of the scheme. An interesting comparison is made in Fig.

5-19 with calculations reported in Ref. 5-11. The calcuiations are for the
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plume boundary of a scramjet exhaust employing a shock capturing technique.
The splitter plate produces impingement shocks similar in geometry t7 those in
the present calculation. The comparison which is meant to be qualitative, is
quite striking in that even the irregular shape of the boundary is reproduced.
This gives some confidence in the present results, however, further comparison

with other three dimensional flow calculations would be useful,
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SECTION 6

THREE DIMENSIONAL PHENOMENA

In Section 3 the flow pattern of two underexpanded interacting rocket
plumes was discussed and the general features of the possible flow fields were
pointed out. In this section the intersection of two three dimensional shock

surfaces and the impingement shock 1iftoff will be analyzed. These features

have no counterparts in two dimensional supersonic flow. In both situations
there is an abrupt change in configquration because attached shock solutions
are no longer viable. The configurational change takes place through a
conical solution centered at the transition point. Detailed understanding of
the nature of these transitions and the ability to compute them accurately is
required in the subject problem. Many other thr2e dimensional supersonic flows
of current interest require understanding of *he shock intersection aroblem
and other three dimensional features which are peculiar to those probiems,
These transition problems are generally complex. The shock wave pattern

formed by two intersecting wedges is an example of a similar conical flow *hat

is less complex than the two transitions being considered. The computation of
the "corner flow" problem has been the subject of research for many vyears and
is the subject of severai papers (Refs 6-1 to 6-3) and was recently the
subject of a Ph.D. thesis (Ref. 6-4)),

The intersection process that occurs between two three dimensional shock
surfaces will be discussed first . A single three dimensional shock surface
has a certain amount of arbitrariness in its description that does not axist

in the two dimensional counterpart. [n both cases, the jump conditions for



tne thermodynamic state variables can be reduced to the one dimensional
Rankine-Hugoniot relationships employing the Mach number normal to the shock
wave (defined by velocity component normal to the wave and the undisturbed
sound speed). The tangential component of the oncoming velocity vector is
unchanged by the shock wave. In two dimensions, this leads to an unambiguous
relationship between pressure ratio and flow deflection across a shock wave
and the definition of a shock polar. In three dimensions, it is possible to
arbitrarily decompose the tangential velocity vector into two components in
the surface of the wave. One of these components can be combined with the
normal velocity component to form a velocity vector oblique to the wave. The
jump condition, for the thermodynamic variables, can be determined by the
corresponding two dimensional oblique shock relationships. The velocity
downstream of the shock surface is found by adding to the oblique shock
‘solution the remaining component of tangential velocity (which is unchanged by
the wave). Because the decomposition of the tangential velocity vector is
arbitrary, a three dimensional shock wave surface can be described by an
infinity of two dimensional oblique shocks with an additional tangential
velocity component. For a given surface normal vector to the shock the
downstream result is always identical.

The intersection of two shock waves in three dimensional flow takes place
along an intersection line whereas the two-dimensional counterpart takes place
at a point. The properties of the interaction depend not oniy on the shock
strengths but also the local orientation of the intersection line. When the

flow is supersonic downstream of the interaction the intersection line is at

the leading edge of the transmitted and reflected waves. The transmitted and




A

reflected waves originate at the intersection line in the same manner fhe
attached shock surfaces originate at the leading edges of swept wings in
supersonic flow. Thus the sweep of the intersection line plays a strong role
in the interaction. Because a three dimensional shock surface can cause flow
deflection in any azimuthal direction it cannot be simply described as a first
(upward defiection) or a second (downward deflection) “"family" shock as a two
dimensional shock can. In two dimensional flows the intersection of two shock
waves can be categorized according to whether both shocks are of the same or
opposite family. In either case there are a variety of shock configurations
that can result and the subject is an established segment of supersonic flow
theory (see, for example, Refs., 6-5,6). While a three dimensional shock
cannot be described simply as belonging to one of two families, the
interaction process of two shock surfaces can still be categorized in this
manner. At a point along the intersection Tine each of the two waves can
rotate the flow in the same direction or in opposite directions relative to an
imaginary axle parallel to the intersection line. Thus, the simple
classification employed in the two dimensional theory can be employed locally
for three dimensional shock surfaces.

In the following discussion the evolution of a three dimensional
shock/shack interaction process is elucidated by considering the model probliem
of a circular conical shock intersecting a planar shock surface. This model
problem has the highly desirable feature of constant shock strengths (in terms
of pressure ratios) at all points along the geometric intersection line which
is a true hyperbola. The case considered here has a reqular reflection

process at the leading edge of the intersection line. When viewed along the

h-3




intersection line, the initial interaction is locally that of two same family
shock waves intersecting and there is a simple transmitted and reflected wave
pattern. Downstream of the leading edge the sweep angle of the intersection
line increases, giving rise to decreasing apparent normal Mach numbers and
increasing apparent deflection angles so that at some point the simple regular
reflection process is no longer possible. A detailed discussion of the
reasons for this is given employing the shock polar diagrams in the
pressure/deflection plane. A Mach (or irregular) reflection process develops
in which an additional shock segment bridges the span between the two incoming
waves. This shock segment moves ahead of the geometrical intersection of the
two incoming waves and there are now two shock tripte points characterizing
the intersection. The cross flow behind this additional shock segment is
subsonic relative to the triple points and is analogous to the Mach reflection
that develops in the three dimensional compression corner flow field. The
propagation of an irregular reflection pattern thus involves the intersection
of three shock surfaces - the two incident waves and the Mach reflection wave
which is generated by the intersection.

The complex nature of the intersection of shock wave surfaces in three
dimensional flows can be illuminated by considering the model flow
configuration shown in Fig. 6-1. A thin wedge in a supersonic stream produces
a supersonic oblique planar shock surface and a uniform flow parallel to the
wedge. A cone is aligned with this flow giving rise to a conical shock
surface. The conical shock and the planar shock intersect along a hyperbolic
line in the plane of the oblique shock (Fig. 6-1(b)). In cross-sectional

view, the circular conical shock intersects the planar oblique shock at two
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points. The wave system that joins these two points can be characterized as
either a simple transmitted and reflected wave system (regular) or a more
complex system containing the equivalent of a Mach reflection {irregular).
These are shown on the right hand side and left hand side of Fig. 6-1(c¢)

} respectively. The pattern that prevails (regular or irregular) depends on the
location along the intersection. Initially, the sweep angle is zero and the
interaction is regular (for the cases considered here with supersonic
downstream velocity). Downstream, as the sweep &ngle increases, a transition

occurs and the shock pattern becomes irregular. In the regular reflection a

local two dimensional flow analysis centered on the intersection line can be
employed to determine the local solution. There is a simple transmitted and
reflected wave and contact surface that leaves the point of intersection
(right-hand side of Fig. 6-1(c). The cross flow relative to the intersection
line behind the reflected/transmitted waves is supersonic. Therefore, the
intersection line can be viewed as the leading edge of these shocks and the
solution is independent of downstream properties . In the Mach {irregular)
reflection case, the resulting shock system is actually ahead of the
geometrical intersection of the cone and wedge shocks (left hand side of Fig.
6-1(c). There are now two shock triple points, and the cross flow is, in
general, subsonic; thus, flow properties from the high pressure side determine
the propagation velocity.

In the case of the reqular reflection (shown schematically in Fig. 6-2,
the solution is arrived at by decomposing the free stream velocity into the
components normal and tangential to the intersection line. The tangential

component of velocity is parallel to all the wave surfaces by virtue of the
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geometry of the intersection. Figure 6-3 details a point along the
intersection line showing the two incoming waves and the transmitted and
reflected wave surfaces. In the plane containing the normal component of
velocity (Fig. 6-4), the flow pattern is identical to that of the
two-dimensional flow containing the intersection of two shock waves of the
same family. The incident shock waves are known in strength and do not
interact until they intersect (the flow behind them is supersonic). The
solution for the transmitted and reflected wave strength is achieved by
determining the deflection of the contact surface 83 (Fig. 6-4) to match the
pressures in regions (3) and (4) behind the transmitted and reflected waves,
respectively. This can be achieved by a simple iteration procedure. The
process is best understood by studying the flow process in the pressure/flow
deflection hodograph ptane (Fig. 6-5). Each point on curve I, the shock polar
associated with the upstream velocity (the velocity component normal to the
intersection line in the three-dimensional case) corresponds to conditions on
the high pressure side of the shock wave. The entire polar corresponds to all
shock wave angles ranging from the local Mach angle to a normal shock (for
both positive and negative deflections). The pressure in zone (1) is
determined simply by moving to the deflection 8, on the abscissa. For the
Mach number of the flow, in zone {1) a shock polar, curve I1I, can be
constructed at point (1), and the pressure at (2) is determined corresponding
to the deflection &,. The shock polar at point (2), curve IIl completes

the solution. Polars I and 11l intersect at 3 point which is denoted as point
(3} along polar I and (4) along [II. Points (3) and (4) are coincident in the

pressure/deflection plane but represent different velocities and entropy (or

‘
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density). By the nature of the construction, point {3/4) is at the desired
condition which brings the flow behind the transmitted and reflected waves to
identical pressures and flow deflections. The regular wave system depicted in
Fig. 6-5 has a weak compression wave {the arc {2) - (3)) as the reflected
wave.

The reflected wave between polars I and II can be an expansion or
compression wave depending on the orientation of polars I and II. There are
four possible intersection patterns of polars I and II {Refs. 6-5, 6-9) shown
in Fig. 6-6 that are characterized by the number of points the two curves
intersect. Whenever point (2) on polar Il (see Fig. 6-5) is at a lower
pressure than a point on curve I for the same deflection, the reflected wave
is a compression (shock) as described in the preceeding paragraphs. However,
in them =0, m = 2 and a portion of the m = 3 case {(m is the number of
intersection points of the two curves), the geometry is reversed and the
solution for the reflected wave is a simple centered expansion, as shown in
Fig. 6-7. It can be shown (Refs. 6-5, 6-6) that the intersection pattern is
dependent on free stream Mach number and defiection angle 61, (as well as
the ratio of specific heats for the gas). In any of these cases the wave
pattern becomes irregular when the shock polar 11] does not intersect polar I
for in the case of a reflected exnansion wave when the characteristic curve
d0oes not intersect 1). The simple all supersonic (cross) flow pattern
associated with the regular reflection is no longer possible and a more
complex pattern emerges.

In the model flow prcblem for specified cone and wedge angles and free

stream Mach number (the conical/wedge shock intersection problem), the local
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Fig. 6-6 The Four Possible Configurations for Two
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solution depends solely on the sweep angle (see Fig. 6-1) of the intersection
line. This is because the pressure ratios across each shock wave are constant
and independent of location. In addition the apparent deflections through the
two incoming waves as well as the governing Mach number normal to the
intersection line are all functions of the sweep angle because the flow is
uniform upstream of the wedge shock. Evolution of the shock system transition
from reqgular to irregular is illustrated in Fig. 6-8. These figures detail
the shock polars for the following conditions: Mo, = 3.0, ¥= 1.4, wedge angle

10°, wedge pressure ratio p,/p., = 2.054, cone angle 6. = 20°, cone

pressure ratio p./p, = 1.95 or p./p, = 4.005, (see Fig. 6-1 for

definitions). The asymptotic sweep angie of the intersection line (@, ) is
60°. Figﬁre 6-8a is the pressure/deflection plane for the initial
intersection of the shocks ( ¢ = 0). In this case the polars are very close
together and the reflected wave is a very weak expansion wave which cannot be
seen on the scale of the fiqure. Downstream along the intersection line Fig.
658b shows the shock polar pattern for @ = 52°, Note that while the polar
patterns are considerably different, the pressure at points (2) and (3) which
are the wedge and cone shock pressures are the same as the ® = 0° case. At
this sweepback angle, @ = 52°, the norma) Mach number to the intersection line
has decreased to 2.15 from the free stream value of 3.0. The apparent wedge
and cone shock deflection angles‘which were 10° and 20.8° initially are now
13° and 26.2°, a geometric result of projecting the flow fields onto the plane
normal to the intersection line. The decreased normal Mach number and

increased apparent deflection moves the solution toward the upper right hand

corner of polar I. A closeup of this upper right hand portion of Fig. 6 -8b
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is shown in Fig. 6-8c. This case is interesting because point (4), the flow
behind the transmitted wave, is on the subsonic portion of polar I. The cross

flow becoming subsonic is a signal that there is an incipient change in

PRy

structure. In fact, a small distance downstream where ¢ = 55° (Fig. 6-8d)
polar IIl no longer intersects polar I, and the regular four wave pattern that
had prevailed is now not possible. A closeup of the interesting portion of

this figure is shown in Fig. 6-8e*

‘i, The subsequent flow pattern is characterized by a five-wave intersection

z made up of two three wave intersections, as shown in Fig. 6-9a. This shock ;
% pattern is qualitatively similar to the one that prevails in the internal 1

_; compression corner flow field (Refs 6-1,2,3,4). The major qualitative

§ difference is that the two contact surfaces forming the triangular zone behind

‘; the Mach reflection shock meet at a point, denoted b on Figure 6-92, on a

¢

contact surface. In the compression corner flow field this point is in the 1
corner. It is not possible to characterize the entire interaction by a single
shock polar pattern because there are now two intersection lines. However, in

order to visualize the process the velocity field normal to the interaction is f

approximated as constant and uniform. In Fig. 6-9% the flow in the pressure

/deflection plane would then be as follows (Ref. 6-6) describes the two 3
dimensional counterpart): (a) points (1) and (2) are at the wedge and cone

shock pressures as before; (b) shock polars I and Il intersect in only one

place (for this case) and that determines the pressure and deflection at the

T . et r A LS TR T N Y

* The change in structure might come at the point where the cross flow becomes

sonic. It is not clear at present exactly where the transition occurs.
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intersection line labeled A; {(c) a similar process takes place at intersection
B - the junction of zones (1), (2), (3) and (5) - where B (in Fig. 6-9b)
represents the only possible shock transition starting from conditions (1) and
(2); and (d) where the segment of the shock wave between A and B is a curved

shock (shown as a bold line in Fig. 6-9b).

A schematic of the expected transition pattern is shown in Fig. 6-10.
- Relative to the transition or breakup point the flow is conical in nature.
The cross flow is subsonic in the zone immediately behind the shock
3 interaction and is thus governed by elliptic partial differential equations.
Thus the propagation speeds of the two triple points leaving the transition
zone can only be determined as part of the solution of the entire transition

zone. An interesting and important aspect of the flow pattern is that the

-'.d.—‘-./o..‘ﬁ,- . L e

pressure levels prevailing behind the interaction shocks are higher than the

levels attained by the regular reflect pattern just before it breaks apart

- BN A

(shown as the X on polar I in Fig. 6-9b). Thus, at the point along the
intersection line where the shock pattern transitions from regular (four-wave)
to irregular (five-wave) the flow pattern must include a three dimensional
expansion zone immediately behind the shock wave to equiiibrate the pressure.

Again the strength and distribution of this expansion zone are determined as

part of the complete solution of the transition zone.

The(impingement) shock 1ift off problem is another three dimensional

transition problem that occurs in the multinozzle flow field. Between

} stations denoted by 0 and 1 Figure 3-2(a) is the initial portion of the

E impingement flow field and the origin of the impingement shock surface. The

: flow pattern in this region can be studied by examining the simpler flow in : ' k
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which two uniform circular jets impinge. Figure 6-11 shows the overall flow
configuration (leaving out the interaction for clarity). Two circular jets
with uniform properties impinge at the symmetry plane. The intersection of
the plume boundary and the symmetry plane is an ellipse. The shock pattern
develops as is shown in an isometric view in Fig. 6-12. In the cases that are
considered here the shock wave is initially attached at the origin. The
initial shock pattern when viewed as cross sections have the appearance of arc
segments anchored at the ends to the intersection line. At some point along
the intersection line this pattern is no longer possible and the shock ends
1ift off.

The shock pattern is shown in Figure 6-13 along with the details of the
flow at the shock leading edge. In a manner completely analogous to that
employed to determine the shock wave strength at the leading edge of a swept
wing in supersonic flow (c.f. Ref, 6-7) the shock is examined in a plane
perpendicular to the intersection line. Again the component of velocity
tangential to the intersection line is unaltered by the shock surface. These
sections appear adjacent to each cross section in Fig. 6-13 , Near the
leading edge the Mach number normal to the intersection is large enough and
the deflection (8 1) small enough so that there is an attached shock
solution as shown by the adjacent pressure deflection shock polar diagram,
Downstream at station 2 the normal Mach number (M,2) has decreased and the
apparent deﬂectionbz has increased. The shock polar has diminished in
size and the required deflection (62) is getting near the maximum deflection
possible for Mpo. At station 3 the shock has already lifted off the

symmetry plane. This is required because at Mn3 the deflection 83 cannot
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be achieved by an attached shock. Note that M,3 and 8 3 are determined

relative to the geometric intersection line of the plume and the symmetry
plane, The actual leading edge of the shock wave moves up along the
undisturbed plume boundary. The flow perpendicular to this leading edge or
intersection line must be at least sonic (see Section 3) because the velocity
must be supersonic to reexpand and match the pressure on the plume boundary.
In the neighborhood of the 1iftoff point the flow pattern is conical.
With the 1iftoff point as the origin of a spherical coordinate system the flow
pattern develops along spherical rays and is geometrically similar when scaled
to the distance from the 1iftoff point. A schematic of this conical flow is
shown in Fig. 6-14. The orientation and relative position of this pattern is
shown in Fig. 6-12. The Mach cone that leaves the 1iftoff point limits the
extend of its influence. The flow outside this cone is uneffected by the
1iftoff. Inside the region bounded by the Mach cone the cross flow (conical)
is subsonic and the governing conical equations are elliptic. Therefore the
solution of this domain rests on an iterative or relaxation procedure. The
segment of the shock between AB (Figs. 6-14 and 6-12) has the following
properties. At point B the shock rotates the flow opposite in sense from that
at point A. At point A and at points 1 and 2 upstream (see Fig. 6-13) the
shock rotates the oncoming flow through a clockwise deflection. At point B
the deflection is counterclockwise. Between A and B the shock goes through
the spectrum and produces no rotation (is normal in the conical sense) at
point C. The shock produces sonic velocity at point B where there is
anchored a centered expansion to reestablish the background pressure. This

expansion produces supersonic cross flow so that a portion of the domain shown

in Fig. 6-14 does not have subsonic cross flow.
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SECTION 7
A NEW METHOD FOR TRACKING DISCONTINUITIES IN NUMERICAL CALCULATIONS

The multinozzle plume flow field is an example of a complex three
dimensional supersonic flow field. These flow fields by their very nature

S have solutions which are discontinuous or have discontinuous derivatives.

This is reflected in the mathematical description of the flow field by a set

of hyperbolic partial differential equations. Equations of this type have !
wave like solutions which permit the propagation of functions which have
discontinuous derivatives. In addition these eguations admit solutions which
are discontinuous. For the Euler equations the jump conditions along these
discontinuities are the familiar Rankine-Hugoniot conditions. Two regions of
continuous solution can be joined by a jump along a shock. A numerical
.solution procedure for supersonic flow problems should, therefore, include
within it the ability to deal with these properties. Section 4 of this paper
describes a "floating fitted discontinuity" scheme that tracks each
discontinuity in detail, and computes the jump properties exactly. This
method as outlined requires a large amount of program logic to handle complex
geometries. In this section a new approach to tracking discontinuites is
examined. The algorithm employs the normal functional approximations (Taylor
series) at all regular mesh points. At mesh points which are recognized as
being adjacent to discontinuities the appropriate flow properties are
approximated by discontinuous functions.

There is an underlying assumption in almost all finite difference
algorithms - the unknown function can be approximated locally by a Taylor !
series expansion. In fact, finite difference schemes are categorized

primarily on this basis. A scheme is said to be second order, for example,
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if the difference solution and the exact solution expanded in a Taylor series
match to second order. Supersonic flows solution generally cannot be
approximated by Taylor series in all regions. [t seems reasonable then to try
to employ other more general functions in portions of the flow where there are
discontinuities. As an example the Euler equations for 2D flow can be written
in vector form* as

Uy + Vy = 0 (7-1)

y
At a shock wave the values of U upstream of the shock (U~) and downstream of
the shock (U*) are related by

(Ul - [vlm =0 (7-2)
where [ ] means jump across the shock and W is the shock propagation speed.
The exact solution in the vicinity of a shock wave through the origin is

U=U"+[U]H(x-y/M™)

Vo= v- - WUl H (x - y/™) (7-3)
where H(z) is the unit step function given by

H(z) =0 z2<0

=1 2z2>0 (7-4)

Simply substituting (7-3) shows that it is a solution (7-1) (in the context of
the existence of the delta function 8 (z) ) This analysis strongly suggests
that solutions for U in the vicinity of the shock should take the form

U=U-+ [U]h (2) (7-5)
where h (z) is a chosen function that has the desired properties of H(z) and

can easily be employed in a numerical scheme.

Pu pv

* ; = P+ pu - [puv
for the Euler equations U ouv V=[5 va

puh0 pvh0
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Before proceeding it is interesting to note some of the properties of the
"exact" solution for a shock wave Equation (7-3). Neither U or V are

continuous across a shock wave. ! + WV is continuous

U= + WV= = U* + Wyt (7-6)
The vector V is a function of U only. [t can be expressed symbolically as
V = F(U) so that v* = F(U*) and V-~ = F(U~). Equation 7-6 is then a
relationship between the vectar U~ and U*

U= + WF(U-) = U* + WF(U*) (7-7)

No value of U between U= and U* can be substituted on the right hand side

of Equation (7-7). In shock capturing schemes where the solution vector U
varies smoothly {(or not so smoothly) between U~ and U* in the région of

the shock jump Equation {7-7) is not satisfied. The portion of the flow field
between 1= and U* is an artifact of the calculation and has the inherent

error associated therein.

As a test bed for these ideas the solution of a supersonic flow field
containing a contact discontinuity was employed. This flow field was chosen
because : (1) contact discontinuities spread out over more mesh points than
shocks and (2) it represents a jump in entropy (total pressure) only -
pressure and deflection are continuous across it. In the following paragraph
the use of a ramp function to model a jump in entropy is described in detail.
Then the brief discussion of the numerical calculation procedure is given. At
mesh points away from the jump a standard first order finite difference scheme
is employed. Results of two test computations are discussed in detail. (In

the computer code stagnation pressure is used instead of entropy.)
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The ramp function shown in Fig. 7-1 was employed in order to implement

some of these concepts.

1 z2<0
R(z) = 1 -2z/h 0<z<h
0 h <z

Figure 7-2 shows a portion of a finite difference mesh near the vicinity of a
discontinuity in entropy (or stagnation pressure). In the mesh inverval
(j=1, j+1) there is a discontinuity in the function S. If the functional form

of S in this mesh interval is given by the ramp function then

S =Sj4 + (Sj-l - SJ'+1) R (x - X0j) (7-9)
where xgj = Xj - h(S3-1-S3)/(S5-1 -Sj+1) (7-10)
or A= (Sj.1 - Sj)/(S5-1 - Sj+1)

Xoj = Xj =Ah

A possible interpretation of the distribution of S in the interval is shown
as a dashed line in Figure 7-2. S can be envisioned to have a step
discontinuity at the mid point of the ramp function. The value of Sj serves
to locate this point between j-1 and j+1. The governing equation for S in one
dimensional unsteady flow is*

S¢g +uSy = 0 (7-11)
Using the ramp solution of equation 7-11 given by equation (7-9) the value of

S at time At latter than is shown in figqure 7-2 is given by

* Discontinuous solutions of this equation follow the same form as equation
7-3. S =S + [SJH(x-ut)
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Fig. 7-1 Definition of the Ramp Function
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Fig. 7-2 Ramp Profile Rendition of Entropy Discontinuity
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SNJ' = Sj+1 + (Sj-l - Sj+l) R (xJ = uj At - XOJ') (7-12)

SNj+1 = Sj+1 + (Sj-l" Sj+1) R (Xj - ujAt +h - xoj) (7-13)

SNj-1 = Sj+1 * (Sj-1 - Sj+1) R (xJ- -ujat - h - xoj) (7-14)

A research code (KAYT1) was written to investigate the utility of the
ramp function in certain problems. The program is for two dimensional
supersonic flows and employs a finite difference calculation procedure using
windward differences and characteristic form for the equations. The purpose
of this section is to describe the results using the ramp function so only a
brief outline of the numerical scheme will be given. The primary unknowns are

pressure, flow deflection and total pressure. The governing equations are

2

P)=0

9X + Al ey + (B/¥M )(PX + Al y) (7-16)
2 =

8 +xy0, - (B/YM)(P +2a, PY) =0
(7-16)

Pox t A3 Poy= 0
(7-17)

where P = Qn(D/Dr), Ay s tan{B+u), Ay = tan(g-u),

A3 = tand, and Po = Qn(po/pr) and p . is

some reference value of pressure. The marching direction is the x direction,
Transverse (y) derivatives in each equation are evaluated by either forward or

backward two point formulas depending on the sign of A; multiplying that

e

termm, For example, in equation (7-15) the term A, Py is evaluated at mesh !

point J (where y = h(J-1) and h is the mesh spacing) as follows

(/M) (P(J) - P(I-1)) A, >0 E
ALP = (7'18) X
Ly (a /h) (P(3#1) - P(3)) 2 <0 b
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In this formula all values of the pressure are at the known station x. The

derivatives in the marching direction (x) are evaluated by two point forward

derivatives as follows
Px = (PN(J) - (P(J))/Ax (7-19)

where PN(J) denotes the value of P at mesh point J and x =Ax. Formulas
(7-19) and (7-18) are used for all derivatives in equations (7-15), (7-16) and
(7-17) to derive, at every mesh point, two equations in the two unknowns PN
and 9N and an equation for PoN. The code overrides the basic equation for
PoN if it is determined that there is a discontinuity in P, at some mesh
point. Then the determination of P,N empioys the ramp function algorithm as
outlined in the previous paragraphs.

Figure 7-3 shows the schematic of the flow field used as the first test
example. Initially at x = 0 and y > 0 the flow is inclined at 15° to the «x
axis. At x =0 andy = 0 the flow inclination is 10°. The flow has a Mach
number of 2 at mesh points 2-10 and 4 at mesh points 11-50 and 2.19 at mesh
point 1. The flow situation develops as follows. There is initially a
discontinuity in total pressure between mesh points 10 and 11. A 5° expansion
which is initially between mesh points 1 and 2 propagates into the flow and
interacts with the contact surface. At the contact surface both pressure and
flow deflection are continuous and there is a jump in stagnation pressure.
The flow is divided into five regions by the expansion waves as shown in
Figure 7-3. In these regions the flow properties are constant and the exact
solutions are given in the table on the fiqure. Figure 7-4 shows the
numerical computation of this flow using KAYT1l. The step size in the x
direction is held fixed at h/2 for these calculations. The values at the

boundaries y = 0 (J = 1) and y = 49 (J = 50) are also held fixed.
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REFLECTED
EXPANSION

DISCONTINUITY
SURFACE

J=2 ' J=105

TABLE OF PROPERTIES IN EACH REGION

M 4 in (p/p1) in (polp.l) 9 +v g-v
7 2 .262 ] 2.057 722 -199
2 4 262 0 5.023 1.41 -886
3 2.19 178 -.291 2.057 722 373
4 2.24 .199 -.375 2.057 m ~373
5 429 .199 -378 5.023 1.41 -1.01

Fig. 7-3 Schematic of Supersonic Flow Field Having an Expansion

Fan Interact with a Discontinuity in Total Pressure

(Test Case One)
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Figures (7-4) (a) and (b) show the smooth development of pressure and flow
deflection. In these diagrams it is hard to see where the discontinuity is.
Figure (7-4) (c) shows the total pressure profiles. The ramp profile joins
the constant region on the left to the higher but constant region on the
right. The jump in total pressure takes place with a single intermediate mesh
point. At two stations step 60 and step 90 these are actually two
intermediate mesh points. This occurred because the detection scheme for
locating the total pressure discontinuity was very primitive. In any event
the algorithm produces self mending results. Figures (7-4)(d) and (e) show
the profiles of Reimann invariants 9+x;and 86— v respectiveiy. The code does
not use these variables in the computations. These graphs serve as checks on
the calculation procedure. The jumps that occur in each of these profiles is
a result of the jump in total pressure which is associated with a jump in Mach
number and hence a jump in , the Prandtl Meyer angle. In (7-4)(e) the initial
expansion fan starts at x = 0 between mesh points 1 and 2. It moves to the
right (along @ +ucharacteristics) and spreads out. The natural spreading of
the fan is augmented in the numerical calculation because the wave front
(discontinuous jump in derivative) at the head and tail of the fan are not
tracked by the program. (There are no general algorithms for the computations
of supersonic flow which address this point.) By step 20 (x = 10) the
expansion has intersected with the contact discontinuity and is subsequently
transmitted. Only a wave moving to the right appears in the results for §-».
This is in accordance with classical supersonic flow theory., In Fig. (7-4)(d)
the left moving waves become evident. Before step 40 only the movement of the
discontinuity is evident. Then at step 40 the reflected expansion wave starts

to form. The values of 8+v and@ -~ in regions 4 and 5 are compared with




their exact values in the table below. Is it clear that the numerical

calculation is very accurate in the computation of these quantities.

Comparison of Characteristic Calculation and Finite Difference Calculation

Region (6 + V)vFD (8+v) Char (6—v) D (- ") char
4 770 71 - 373 - .373
5 1.41 1.41 -1.01 1.01

Figure 7-5 compares the computations using the ramp profile with a
computation that does not specifically "fit" the discontinuity. Figure
(7-5)(a) compares the profiles of total pressure. The profiles are smooth but
the jump in total pressure is spread out over approximatley fifteen mesh
points., Figure (7-5)(b) and (c) show the profiles of the Reimann invariants.
Again the results are smooth and have the correct values upstream and
downstream of the discontinuity. However, it is clear that in these results
the discontinuity zone is now fifteen mesh points wide. This represents about
one third of the mesh points used in the calculation.

The most series errors in the computed results using the ramp function
appears in figure (7-4)(c). The exact location of the discontinuity and the
center of the ramp function have drifted apart. This is a result of the wave
front spreading noted in the previous discussion. The expansion zones spread
out ahead of the exact characteristics location and cause the value of the

streamline slope to change in advance of the proper positon. In order to
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determine if this is the correct explanation an additional calculation was
performed that did not have a wave front in the initial profile. Figure 7-6
shows the characteristic mesh for this computation. At step zero there is an
expansion zone which is propagating toward a constant pressure boundary. In
the finite difference program this constant pressure boundary is modelled by a
Jjump in total pressure. The expansion zone impinges on the boundary and
reflects as compression waves which move back into the flow. On this figure
is the computed location of the flow boundary by the finite difference
calculation. The agreement is virtually perfect. Figure 7-7 shows pressure
profiles for the entire computation. Figure 7-7(a) is the initial pressure
distribution at x = 0. Figure (7-7)(b) is at x = 10 where the expansion has
partially reflected from the boundary. The finite difference computation and
the characteristic calculation are in virtual agreement. The largest errors
seems to be near the boundary where there is a break in slope in pressure.
Figures 7-7(c) and {d) shows the subsequent development of the flow field. At
x = 70 the compression wave is about to reflect from the inner boundary.

There is a spreading of the wave that is first evident at x = 40. At x = 70
the finite difference results first preceded then lag the exact calculation by
3-4 mesh points. The precise cause of this dispersion has not been studied.
Two primary sources that should be investigated are the first order nature of
the computational algorithm and the details of the reflection process at the

boundary ramp function.
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The use of the ramp function in three dimensional flow requires further

work. In two dimensional flow the actual position of the discontinuity was
associated with the intermediate value of the function. In essence the method
tracks the discontinuity on a subgrid basis. In three dimensions this
tracking must take place in two directions (in the cross plane). A method
must be worked out to accomplish this in a simple manner. The ramp function
must also be tested out in flows with shock waves. The shock waves have a
jump in all flow properties and not just a single one as was employed in the
test calculations. The shock propagation problem has the added complication

that the properties behind it are a function of the shock (wave) speed.




SECTION 8

MACH DISC ANALYSIS AND NUMERICAL COMPUTATION

Shock wave systems in exhaust plume flow fields can develop in a manner
which produces normal shock waves or Mach discs. In axisymmetric flows the
shock wave strength intensification process leading to the formation of the
Mach disc is understood on theoretical grounds. For three dimensional plumes
there is Tittle or no knowledge of the processes and flow properties that
result in normal shock segments in the plume (see Section 3). The numerical
prediction of the location of the Mach disc in axisymmetric flows has been
accomplished in recent years (Refs. 8-1, 8-2). These studies are pureiy
numerical calculations. In this section an analysis is derived which
explicitly highlights the key properties of the exhaust plume that influence
the Mach disc location. Employing the results of this analysis a new numerical
integration scheme is deriQed to compute Mach disc streamtubes. This new
method has the potential for overcoming the shortcomings of the previous
integration procedures. The improved understanding of the axisymmetric “ach
disc physics should serve as a first step in understanding the three
dimensional plume situation.

A schematic of an axisymmetric plume with a Mach disc is shown in Fig.
8-1. At all points in the flow outside of the Mach disc streamtube the plume
gas velocity is supersonic. A barrel shock divides the plume into a "core”
and a shock layer upstream of the Mach disc. At some point along the barrel
shock there is a triple point which is the confluence of the barrel, reflected
and Mach disc shock waves. Downstream of the triple point the flow 15 divided
into a supersonic flow bounded on the outside by the reflected shock wave and
plume boundary and on the inside by a dividing streamline and a subsonic core.
The subsonic core flow has passed through the normal shock [Mach 4isc' and 1s

centered about the plume axis.
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Fig. 8-1 Schematic of Axisymmetric Underexpanded Rocket Exhaust Plume




According to Abbett (Ref. 8-1) the triple point location can be uniquely
determined by finding the Mach disc position which leads to a smooth passage
through the sonic acceleration of the subsonic streamtube (see Fig. 8-1). In
both Refs. 8-1 and 8-2 the following models were employed. The subsonic
streamtube was described by a one dimensional flow model. For an estimated
position of the triple point the subsonic flow and supersonic flows are
computed simultaneously by a forward integration schemes. Two possible
solutions result: a supercritical flow has the subsonic streamtube reaching
sonic velocity while it is still decreasing in area. In the other case, a
subcritical flow the subsonic streamtube reaches a minimum in area and then
increases in diameter without choking. An iterative procedure is employed
which narrows down the axial position of the triple point by observing these
two types of solutions. This is a classical shooting method to determine a
solution for a system of equations which have a saddle point singularity
downstream (at the throat of the subsonic streamtube). The basic disadvantage
of this scheme is that no solution for the subsonic streamtube emerges.
Rather a bracket on the triple point location is developed. The existence of a
solution within this bracket is not certain.
The present method does not require shooting the solution from the triple
point location. In the inviscid approximation the location of the sonic
throat can be calculated without a subsonic calculation. The subsonic
streamtube can then be computed by an upstream integration of the equations i
from the sonic throat making use of certain known properties of supersonic ‘
flow to determine the outer flow. A viscous approximation to the Mach disc

problem is presented which accounts for the effects of mixing between the

ot s o ame
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subsonic streamtube and supersonic flow in the simplest manner possible. This
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does not alter the basic computational scheme but adds one more 1éyer to the
iteration scheme.
A one dimensional model for the subsonic streamtube is retained. The

equations governing the flow passing through the Mach disc are (Ref. 8-3)

M2o1 1 dp 1 dA 1+ (r-1)M2 (4?)
8-
M D dx A dx 2 D (8-1)

(8-2)

d A
L% - o <_L>
D

where M is the Mach number, p the static pressure, A and D the subsonic
streamtube cross sectional area and diameter, p, the average stagnation
pressure, and 4>is the friction factor. Using a friction factor in this
manner is an approximation that allows for the simple introduction of mixing
effects along the dividing streamline. The flow behavior outside the dividing
streamiine is incorporated in the function f(x) =6+ + which is the value of
the Reimann invariant on the downward running characteristic determined from a
calculation of the supersonic flow. The pressure on the outside of the Mach
disc tube flow is related to f by the following steps
f' = 8+ (8-3)
( )}’ denotes d/dx
v is the Prandlt Meyer function and is only a function of external Mach number

(m)

, dv dv dm
Tdx dm dx




using

p -y/y-1
_= (1 +7-1 m2 )

o} 2

02

and the fact that pgyp is constant along the bounding streamline equation

(8-3) becomes

1 €¥?= f-8 (8-4)

D h(m)

here h(m) = pdmdv = - 1 Y-1 2 1 1
W ﬂ'ﬁ'&ﬁ ;]3— (1+ —Z-m ) (TTGBZ - 1+82)

where 3"‘4"2'1 and € = (¥=1)/(¥+1)

Equation (8-4) relates the pressure gradient in the external supersonic stream
to the geometry ( 6'(x)) of the subsonic streamtube. The solution of the Mach
disc flow requires that the pressure along the dividing streamline is matched.

Therefore, combining equations (8-4) and (8-1) the basic interaction equation

is

—
(o]
]
(&3]
~—

A
dA = 14(¥-1)  (4f)
ax 3 D

For axisymmetric flow A = nyz where y is the local height of the subsonic

streamtube. The governing equations become

3-5




gl—f‘ + BG =O/ (l-MZ) (3—6) 1
1 dp, ;
—— —— = 0’1 J
Py dx (8-7) |
where B = 2rl h(m) (8-8)
- T
. o= ¥Mn(m) [1+(7-1)M2] Ry (8-9) o
&
- 2 :
o, = - M Ry . (8-10) |

Equation (8-6) is the fundamental interaction equation governing the pressure
balance between the supersonic and subsonic flows and combined with equation
(8-7) (when Q\ﬁFO) must be solved to determine the subsonic streamtube
solution., The approximation tan &=~ 8 has been used in the derivation. The
numerical solution of equations (8-6) and (8-7) will be discussed in later
paragraphs. A discussion of the properties of equation (8-6) brings out
interesting properties of the Mach disc and associated plume.

In the inviscid case it is possible to Tocate the sonic point in the
subsonic flow before solving equation (8-6) by the following process. For a
given location of the triple point aiong the barrel shock the computation of

the external supersonic flow can be continued employing an approximate shape

for the dividing streamline (see Fig. 8-1). From this solution the function .
f(x) = 6§+ v along the dividing streamline can be determined. Downstream of
the Mach disc the total and static pressure as well as the Mach number M

are known and denoted py and py1. The corresponding sonic pressure p* can

be computed by the formula.




The sonic condition requires that # = 0. Determine the pressure on the
supersonic side of the dividing streamline at every point for 6 = 0 from the

(known) function f(x)
v (x) = f (x) -6 (x)

v (x) = f (x)
Use the isentropic expressions relating . to m and m to p to compute the
pressure. Figure 8-2 shows a schematic plot of this pressure versus x. The
sonic point or throat for the inner flow is determined at the point where
these two curves cross. (Figure 8-2 shows two such crossings. It will become
clear in the following discussion why the second crossing is the appropriate
point). The point denoted x* is the throat because it has the two required
properties 6 =0 and p = p*.

Properties of the solution at the initial point and the throat can be
deduced from the interaction equation. For inviscid flow the interaction
equation is

g'-f'+ B6=10 (8-11)
The coefficient B is always negative for subsonic flow (Note that h(m) < 0).
At the triple point the pressure is matched at py. There are two
possibilities 61 > 0 or 8y <0, For@y >0 6'-f'= -BE> 0 therefore
B'> f'. Thus if f'> 0 the initjal dividing line will be unstable because
g' > 0 and the slip line slope increases and forms an upward cusp. To
attain a concave downward curve the inital value of f' must be negative. In
terms of pressure this is a compression wave. In the case of 61 <0 a
stable curve can only be achieved for f' ¢ 0. In all plume calculations that
have been examined the initial flow behind the triple point is compressive or
has f' > 0, therefore, in these cases it is concluded that the initial slope

of the dividing streamline must be positive.
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Fig. 8-2 Locating the Sonic Throat by Matching Supersonic
Side Prassure to Sonic Pressure
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At the sonic throat the flow is accelerating and so dp/dx < 0. The
pressure gradient has the same sign as @#'-f' since h(m) < 0 (see equation
(8-4)). Thus @'-f' < 0or f' > §'. The sonic throat has the following two #
conditions 8 = 0 and 6' > 0. Therefore, the throat can only occur when
f' > 0 or an expansion portion of the supersonic flow. This precludes the
sonic throat from occurring at the first place the curves cross in Fig., 8-2

where f'< 0,

The following general picture (Fig. 8-3) emerges for the Mach disc
streamtube. The solution curve in Fig. 8-3 is the pressure on the dividing
streamline or in the subsonic streamtube. Also shown is the curve of pressure
in the supersonic stream for 8 = 0 on the dividing line (denoted curve A) and
the values of total pressure py; and sonic pressure p* in the subsonic
streamtube. When the solution curve is above (below) curve A 8> G (8 < 0).
The solution starts downstream of the trible point with pressure py. For
all flows where there is a compression following the triple point in the
supersonic flow the initial angle must be positive and decreases with x.
Downstream of the triple point the subsonic streamtube undergoes an increase
in pressure until the value of 8 reaches zero. Downstream of this point in
Zone (2) f' is still negative signifying a compressive outer wave pattern but
@' < f' so that the pressure drops and the angie decreases. In Zone 3 the
outer flow is expanding and the function f' > 0. The value of 8 increases
smoothly ( 8' > 0) and reaches zero precisely at the point where sonic

conditions are met and the inner streamtube is choked.
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It is clear that the function f plays a decisive role in determining
the subsonic streamtube solution and hence Mach disc position. The value of
the function f is related in a complex way to the entire plume flow solution
upstream of the triple point. It is possible, however, to highlight some
interesting properties which determine f. The value of f, the Reimann

invariant on the downward running characteristic, would remain constant and

equal to its value on the plume boundary if the flow were two dimensional and
isentropic. Because the plume is axisymmetric and nonisentropic f is not !
constant along the waves but it is expected that whatever variations are due
to these effects are approximately the same for all waves.
Figure 8-4 is a schematic of two plumes at widely different free stream
conditions. The quiescient plume is shown for a slightly underexpanded nozzle
exit conditions. The Mach number in the plume shock layer (between interface
and barrel shock) is low, therefore, the downward running waves are at a steep
angle and reach the Mach disc streamtube in a short axial distance. The
pressure on the plume boundary is constant so that the variation in the
function f comes from the curving plume boundary (Constant pressure means that v
is constant). The extent of the plume interface which directly influences the
Mach disc flow is rather short. The highly underexpanded plume (Fig. 8-4b)
has quite a different picture. The gas in the plume shock layer is at very
high Mach number so that the portion of the plume boundary where f originates
is quite extended. 1In addition the plume is in a hypersonic free stream which
creates a large pressure gradient on the interface. Therefore, the details of
the pressure and deflection along a large segment of the plume boundary are
influential in determining both 6 and + along the interface and hence on the

value of f at the Mach disc interface.
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The effect of viscous mixing along the Mach disc streamline introduces
additional compiexity and new features in the solution. Within the scope of
one dimensional analysis it is possible to introduce mixing effects in a
global sense. It is realistic to employ this approximation at present because
the actual detaijled two dimensional flow field is a complex transonic flow
with turbulent mixing and transverse pressure gradients which would be
difficult to accurately model. In the model adopted here the influence of the
mixing is to introduce a mechanism that increase the total pressure in the
subsonic flow. Mixing also changes the flow inclination that the supersonic
flow sees along the dividing streamline through a displacement effect. This

effect is not incorporated in the present model. The sonic throat condition is

no longer & = 0 but it has a small negative value. The increasing value of

po With distance results in increasing flow Mach number even at constant
static pressure. Equations (8-6)-(8-10) show the relationship of the mixing
terms in the interaction equation (8-6) and the total pressure equation (8-7).
The Mach disc flow has lower velocity and lower total pressure than the outer

4\15 negative and o1 s positive. A solution

supersonic flow so that
curve with mixing is sketched in Figure 8-5. The main difference to note in
this solution compared to the inviscid solution (Fig. 8-3 ) is that p, and

p* are increasing with distance. The sonic throat is again located at the
point where the pressure (pg) evaluated by setting 6= 6 * (using the

function f) is equal to p*. In this case, however, the value of 8* is not

known a priori and must be determined as part of the solution.
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The numerical integration procedure for the snlut aon Jf tne “nteract:on
equation is based on integrating the equation /3-0' backward star%ing at “he
sonic throat. Several integration schemes have hbeen emploved with virtual'y
equal success. The numerical integration procedure for the “nviscid case ‘s
outlined first. The extension to the viscous case foliows naturally and is
detailed at the end c¢f this chapter. The starting solutions at the throat are
derived and their numerical implementation is discussed. The solution
proceeds using the following sequence of steps:

{In the followng discussion superscript (i) denotes iteration number and

. Y(i) denotes the subsonic streamtube height computed as a result of the
estimated value by y(i).)
1) Compute y* and estimate M(l), y(l)
2) Determine the location of the throat x* and the flow gradients there.
3) Solve the interaction equation for 8§ (x) by integrating backwards

from the point x*, y* where 6 =20
4) Determine Y(i) by integrating the above solution for 8 .
5) Combine the estimated values of y(i) and the computed values of y(1)

to achieve the next estimate for the Mach disc streamtube y(1+1)
6) Repeat the steps (3) - (5) until the solution converges.
The details for each step are outlined in the following paragraphs.
Step 2 The solution of the interaction equations has a classical saddle point
singularity at the sonic throat. This can be verified by assuming that the
Mach number in the neighborhood of the throat is given by
M2 =1 +a (x - x*) and investigating the nature of the interaction equation

near x = x*,
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consigering the relationsnip between press:r2 and “acn number “or <ne Macn

1isc flow 1 oaM- -2 1 4

L LI g

M= dx Y1 o dx

“_1.2
E =1+ W
2
. 1dp_ e \ ,
Supstitute M2 = 1 - 3 x - x*), - —=8 -t hm, ang 8= Dix -x*! ¢9
o ax

get a relationship hetween the Mach number qradient a and tne 1iv111nq

streamiine angle qradient b,

b;_——.‘l—h*a4f’*

Yrl
In order to be self consistant the subsonic flow must also sarisfy *he one

dimensional Mach number area relationsnip

o 2 .
el 2w
EM° dx Adx g

Again using the expansions for M and A4 near the throat a second relationship

‘between a and b can be derived

2%
3L =2
¥+l

Coambining these two relationships results in a singie quadritic equation

yr +a (2vh*) =2 (y+ 1) £

Step 3 The interaction equation (8-6) is 1nteqrated from one node point ‘o
the next. The value of the function B is assumed known from a previous

iteration step, I[f i denotes the jteration step and X5 ig the value of «x
for mesh point j

g'-f + B =0
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"he evaluation of the integral in equation (8-12) was achieved by either of
*wo methods both of which are given below. In method 1 the trapezoidal rule

'3 amployed resulting in iel i

g (1BlAx/2) - (F - f)
aivl . 7L 3l i i
]

T,
(1 - B, Ax/2)
n the second method it is assumed that the function B has a sincular behavior

3s follows

A

+
A*~ X

8(x) = {(x)
shere B* is a constant which characterizes the singularity at x*. Thisg

results in an integration formula

P4 * ] A s
G {_1 +a3 + B, AX/Z] - g - f

i+1 i+l s ~
GJ = * ) Ax,?
1-33 " -8 axz2
)
ahere N Vo ‘ (X %
a = [« - Xj/‘."\x‘j_*_l = /\3/‘ N VX oo- '(j)/‘.)( - Kj*l) -1
" / * . \’
o1 oLt , _ v, ' - VX - X

3 - A KJ".)I\Xj*'l XJ/ LN K ‘J//( J+1 XJIJ

Step 4 A simple trapezoidal integration formula is used to integrate

hackwards the point x = x*, = y* using the solution for A ,

y

tan 9 x4

Senot1ng the va'lue hy VY

. < Al .
Step 5 3ased on tne new value of 8,774 3t each mesh point an updatea

/a3l se ‘or the “Yach number on the supersinmic side of the 1ivyiding streamiine

1+1 o,
2an ne -“omputed by inverting B for M7t gstng
4 )
i*: R
= ;i - R o
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Using this Mach number and the total pressure of the outer (supersonic) stream

an updated value of static pressure can be computed. Combining this pressure {
and the total pressure of the subsonic streamtube &t each point with the Mach ;

number pressure relationship yields é

1 2 7'1 1;
. 1+1 B 7 - 2
- i {—7_1 [(po/p) ]}

Based on the computed value Yj1+1 and the known value of y* for the

=<1

W3
5 . subsonic streamtube another estimate of the subsonic streamtube Mach number is
[ ,

comput ed

A .
Mj1+1 = F (yj1+1/y*)
where the function F is used symbolically to denote the inverse of the Mach
number - A/A* relationship. (This egquation is actually solved by a simple
iteration.) Finally a new value of M is determined by combining the estimates

M and M using the underrelaxation formula

, , i
Mii*l - 25 {M\jwl £ 75 (M5 + M3)/2

The solution for the viscous case proceeds in exactly the same manner as

outlined above for the inviscid streamtube case with the following

modifications. The initial location of the sonic point cannot be made because

the sonic throat angle 8* 1is given by the formula

. A . s . ‘ .
Since f* depends on the solution an initial estimate of the viscous solution
is necessary to determine x*. The equation for stagnation pressure p, of

the inner streamtube is achieved by straightforward inteqgration, again based

on the current iterate value of 01 (x). In the inversion to determine

Lo . )
Mj’*l the value of y* must be computed for each station using the .
q
relationship pyA* = constant for the inner flow . 3
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Two test cases were employed to determine if the theory and computer
code were operating satisfactorily. 7The first test case consisted of a known
exact solution (inviscid) which the program was required to reproduce. The
second test case was an actual Mach disc flow with substantial mixing effects.
In the first case the computer code and theory reproduced the exact solution
to a very close tolerance. In the second case, the code was used to analyze
the flow pattern and achieved very good agreement with all reported measured
quantities. However, the experimental results reported in Reference (B8-4)
were not complete enough to allow prediction of the Mach disc location.

The first test case was devised by prescribing a subsonic streamtube given
by the equation

y = 1.36 + .36 cos (.59169x - 2.1664) (8-13)
which is shown in Figure 8-6. The streamtube is assumed to choked at the
throat where y = 1.0 the Mach number is unity. Using isentropic flow tables
the Mach number distribution and pressure distribution in the streamtube were
computed . The compatible outer supersonic flow is constructed as follows. A
total pressure ratio (outer supersonic stream to inner subsonic stream)
Po2/Po1 = 14.403 was chosen. The outer static pressure is set equal to
the inner subsonic streamtube pressure. The pressure and total pressure is
known at each point on the slip line so that the Mach number can be computed
(m(x)). The local slope of the streamtube

g =y' = -.21301 sin (.59169x - 2.1664)
is computed at each point and thus the function f(x) = 6 + v can be computed
on the supersonic side of the slip line. The Prandlt Meyer function » is only
a function of m and is computed at each point. This construction has defined

a subsonic streamtube with a consistant value of 6 + v resulting in matched

pressure on the dividing streamline.
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Based on the following input f(x), pgy2/py1 = 14.403, m(x = 0) = .5,

y {x = 0) = 1.158 the computer code is used to predict the slip line height
y{x). If the program is working properly it should reproduce the streamtube
given by equation (8-13). The computed solution can then be compared with the
original equation to determine the accuracy and efficiency of the computer
code. Tables 1 and 2 summarize these comparisons. Table 1 compares the exact
original geometry and the computed numerical resuits. Columns three and four
are the errors in the streamtube height and slope respectively. This
calculation employed forty iterations and used method 2 for the integration
scheme. The errors are at most 2 x 10-3 which is entirely acceptable in
this case. (The function f(x) was only input to three decimal places.) For
this calculation the pressure on the subsonic and supersonic side of the slip
line are compared in Table 2. Column one is the accumulated difference (sum
of the absolute values) in pressure difference along the slip surface. The
total accumulated error is .0073 for the entire 37 points of the calculation.
Thus on the average the difference in pressure at each mesh point is
approximately .0002. This is well within the expected calculation accuracy.

The convergence of the solution is shown in Figure 8-7, where the Mach
number of the subsonic streamtube is plotted for the iterations 1,2,3,5 and
10. TIteration 1 is the starting solution which in this case was chosen to be
M = .25 everywhere but in the vicinity of the throat where the local throat
solution was employed to get a good first approximation. The relaxation
procedure showed very good properties in this case. The successive estimates

for Mach number proceeds smoothly {but not monotonically) toward the final
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Table 1
J

W RO &= WM

Comparison of Numerical Calculation and Exact Solution

¥'- ¥'exact

X Y-Yexact
x102 x102
.00 -.0943 -.0176
.25 -.0985 .0564
50 -.0648 .2847
75 -.0493 -.0842
00 -.0706 -.0096
25 -.1015 -.1594
50 -.1082 .1811
.75 -.1058 -.0388
00 -.1107 L1167
25 -.1322 -.2269
50 -.1741 -.0551
75 -.1880 -.0112
.00 -.1873 .0519
25 -.1744 .0754
50 -.1546 .0955
75 -.1373 .0452
00 -. 1234 .0559
25 -.1065 .0588
50 -.0968 -.0139
75 -.0969 -.0273
00 -. 1112 -.1430
25 -.0992 .1835
50 -.0679 .0013
75 -.0381 .1653
00 -.0160 -.0631
25 -.0036 .0819
.50 .0274 .0859
.75 .0502 . 0201
.00 .0459 -.1282
.25 .0176 -.1674
.50 .0186 -1129
.75 .0556 .1274
.00 .0614 -.1276
.25 .0619 .1942
50 .0692 -.0625
.75 .0565 -.0553
.00 .0297 -. 3854

L.
L.
1.
1
2.
2.
2.
2.
3
3.
3.
3.
4.
4.
4.
4.
5.
5.
5.
5.
6.
6.
6
6
7
7
7
7
8
8
8.
8
9

LI el T SR SRy SRy S Ry Sl RSy S N S e el o S e S e O R =l e e

Yexact

. 158037
.204165
.253695
.305549
. 358591
.411664
.463609
.513290
.559624
.601598
.638295
.668913
.692785
.709388
.71836C
.719505
.712798
.698386
.676582
. 647865
.612859
.572332
.527166
.478350
.426948
.374085
. 320913
.268596
.218274
.171049
. 127950
.089919
.057787
.032257
.013884
.003071
. 000053

¥'exact

.17633
.19202
.20351
.21056
.21301
.21080
.20400
.19273
.17726
.15792
.13512
.10938
.08125
.05134
.02031
-.01116
-. 04239
-.07270
-.10141
-.12791
-.15162
-.17201
-. 18865
-.20117
-.20929
-.21285
-. 21175
-.20603
-.19581
-.18131
-.16285
-.14084
-. 11575
-.08813
-.05889
-.02776
-.00367




Table 2 Comparison of Pressures on Either Side of the Slip Surface

J
J Y apx 102 Psubsonic Psupersonic
=1
1 .0145 .842616 .842761
2 .0324 .870053 .870231
3 .0522 .892628 .892827
4 .0748 . 910797 .911023
5 .0983 .925232 .925472
6 .1223 .936721 . 936962
S 7 .1462 .945849 . 946088
8 .1700 . 953059 .953297
- 9 .1932 .958691 .958923
10 .2162 . 963049 .963279
11 .2388 .966365 . 966590
* 12 .2610 . 968865 .969087
. 13 .2829 .970659 .970878
' 14 .3045 .971839 .972055
15 .3259 .972460 .972674
16 .3472 .972546 .972760
17 .3686 .972106 .972320
18 .3903 .971118 .971335
't 19 .4124 .969525 .969746
: 20 .4347 .967241 .967464
’ 21 .4573 .964141 .964367
g 22 .4808 . 960097 .960331
- 23 .5046 .954893 .955131
24 .5286 . 948238 .94847¢
25 .5526 .939761 . 940001
26 .5764 . 929029 . 929268
27 .5993 .915578 .915807
28 . 6206 .898747 .898960
29 .6393 877762 .877949
30 .6545 .851860 .852012
31 .6673 .820728 .820857
32 .6765 .784111 .784203
33 .6777 .741203 .741215
34 .6791 .692629 .692642
35 .6874 .639292 .639209
36 .7033 .581848 .581689

37 L7279 .522517 .522270

|
:
3
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Fig. 8-7 Convergence of Mach Numbers for Inviscid Test Case
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result which are shown in Figure 8-3. In this particular example the function
f actually has a slight increase near x = 0 which is reflected in the initial
increase in slope of the slip line (8'(0) > 0). Mach number decreases from
its initial value of .5 to .2 at x = 4 with the associated increase in
pressure to near stagnation pressure. In this region of very low Mach number
the subsonic streamtube behgves very much like a constant pressure boundary.
In mathematical terms the function B in the interaction equation is very small
and to a good approximation the interaction equation reduces to@- f' = 0 with
the solution

g=1~f-f(6=0)

This property is displayed graphically in Figure 8-9 where 6 and the"
difference f - f(08=0) are plotted. In this type of flow the central role of
the function f is very clear. Only near the sonic throat where B is order
unity does the solution for # differ markedly from f - f ( 9=0)

The second test case employed the flow field in a ;upersonic diffuser as
reported in Ref. 8-4. The geometry of the flow is shown in Figure 8-10. An
incident shock approaches the diffuser axis. At z = 0 a Mach disc is formed at
the intersection of the reflected and incident shock waves. There is a mixing
layer between the supersonic stream and the flow which passed through the Mach
disc (normal shock). In the mixing layer the flow Mach number smoothly passes

from subsonic to supersonic. Therefore, the sonic line appears to eminate

from the triple point and move almost horizontally at first before curving
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Fig.8-8 Solution Curves for Inviscid Test Case
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Fig. 8-9 Solution Curve for the Caefficient B in the Interaction Equation and
Comparison of Solution and Approximate Function
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dowﬁward and intersecting the axis. Reference 8-4 reports the profiles of
Mach number, total pressure and impact pressure at six stations downstream of
the shock triple point. Only the first three stations are relevant to this
study because the inner streamtube is supersonic downstream of these. It is
important to note that the exact location and size of the Mach disc were not
measured in the experiment and that the closest station to the triple point is
at z = .5 inches. It is pointed at in reference 8-4 that no attempt was made
to probe the exact for orientation of the shock configuration in the vicinity
of the triple point where the shock may be curved.

This flow field was studied using the present analysis as follows. Since
the details of the upstream flow field are unknown not enough information is
presented to attempt an a priori computation of the Mach disc location and
height. It is possible, however, to determine if the computer code gives
results consistant with various aspects of the experiment. In order to do this
the function f(x) = 8 + v was computed using the experimentally observed
values for the Mach number on the supersonic side of the slip line and the
reported slip line geometry. From the published results the value of the
streamline siope was taken to be approximately zero. This was all possible
downstream of the first measured station which was at z = .5 inches. The
properties at the triple point and its precise location were not presented in
the reference. The triple point solution was constructed subject to the
constraint that the pressure downstream was given by the normal shock pressure
(M = 4,60 upstream). This renders the Mach disc calculation a function of
only a single parameter - the deflection across the incident shock, for

example. It was determined that the Mach number Mg (see Fig. 8-10)
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downstream of the triple point (supersonic) was only a weak function of the

initial deflection angle { § . ) and equal to 1.89 which is entirely consistent

1
with the experimental results. The initial flow angle downstream of the
triple point (61 see Fig. 8-10) is a strong function of 8. Since the

flow field is expanding downstream of the triple point the initial angle must
be negative. The value §; was prescribed to be -3.5° and the solutions were
not found to be inconsistant with this value.

Aith function f constructed above, the value of pyy/pg) based on the
triple point solution and an estimated initial height of the Mach disc a
series of solutions was computed. Only one series of computations are
detailed here. Three values of the friction factor constant were employed
-.01, -.005 and 0 (the inviscid case). Figure 8-11 shows the computed slip
line location with two experimentally measured Mach number profiles together
with the result of the computations for the one dimensional results. It is
important to note that the slips line location quoted in reference 8-4,
denoted by S are far outside of an estimate based on the Mach number profile.
It is believed that this occurred because the authors extrapolated the stream-
lines back to a triple point lccation they estimated based on a straight
transmitted shock from z = .5 back to z = 0. In the present calculation the
initial height of the Mach disc was chosen so that the slip line passed
approximately through the center of the mixing layer (hased on Mach number
profile) at the z = .5 station. At both stations the one dimensional values
of Mach number are reasonable averages of the measured profiles. Note that

the one dimensional values have gone supersonic at the second station.
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Figure 8-12 presents the computed slip line location for the three cases
and the Mach number calculations along with the experimental centerline
values. The effect of viscosity is tc move the throat upstream closer to the
Mach disc. This is expected because mixing in these cases increase the
average total pressure of the subsonic stream which increases the Mach numbers
(by decreasing the local value of p/p,). The experimental sonic line is
shown in the figure. It is not possible from these results to conclude which
value of friction factor is most appropriate. The measured centerline Mach
numbers are below the calculated values in all ceses which is to be expected
based on the upward curvature of the dividing streamline .

Figure 8-13 shows the total pressure distribution for the three cases. The
total pressure increment at the sonic point is 13 % and 8 % for the cases with
friction constants k = -.005 and -.01 respectively. In this case the effect
of mixing does not have a dramatic effect on the geometry of the flow field
(Fig. 8-12). Friction moves the sonic point a noticeable amount, however, by
far the largest force on the flow is the static pressure gradient. These
conclusions cannot be carried over to the Mach disc in a plume because in that
case the initial pressure gradient is compressive behind the Mach disc (f{x)
decreases). Therefore, the static pressure gradient tends to decelerate the
flow in opposition to the total pressure gradient which is driving Mach number

in the opposite direction.
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Fig. 8-12 Comparison of Computed Results for Various Friction Factors
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NOTES FOR VISCOUS SOLUTIONS:

Throat solution - the Mach number gradient a at the throat is given by

soiving the eguation

) A A, A
220y%) + a(2vh* - (y+1)YPe) = 2 1)Ex —y () B x 1 21 ) Prnrsye

The slope gradient b is then

b = f'% ~yh*a/(y+1) +vh*Pe/yx

and the throat angle is
g* =yf*

A
The friction factor f is related to the inner and outer Mach numbers by

A
T = 2k [T 2

—

m - M
Tref ‘/1 + .1 m? \/l + 12
2

~

<

A
where f = ZTAOVZ and k and Tpo¢ are parameters in the eddy viscosity formula

for tne shear layer.
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SECTION 9

CONCLUSIGNS

The optical signature and thermochemical properties of rocket exhaust
plumes are sensitive functions of the many parameters determining the plume
flow field. The influence of the many inputs bearing on the plume signature
is basically through the temperature and species fields. The plume is a hot
mass of gas composed of a variety of optically active species. The precise
determination of the optical signature is based on accurate fluid mechanical

predictions leading to spatially resolved temperature, pressure and species

concentration fields. Both chemical kinetic and radiative transport processes
are driven by source or rate terms which are of the Arrenhius type.

Therefore, the IR signature is very sensitive to temperature and this
sensitivity increases as the level of plume temperature decreases. A model
plume has been analyzed based on mathematical analysis taking advantage of
this mathematical property. The direct quantitative relationship between
temperature field and species field and 1ocal station radiation has been
shown.

In the general case of multinozzle rocket plume flow fields the inviscid
pattern is a complex three dimmensional flow containing several shock wave
surfaces. The shock waves produce both near and far field temperature
increases and so are central to (chemical activity and) optical signature
predictions. While the shock wave structure is not the only fluid dynamic
process involved in determining the temmerature distribution it is involved in
inviscid flow field calculation which is the primary skeleton on which is
built the total flow field picture. Accurate prediction of the shock wave

structure can be achieved only through detailed calculations which track the
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shock surfaces. Methods which "capture" the shock waves would require machine
memories and computer times which are far beyond what is presently available,
A floating three dimensional "fitted shock" computer code was develped for
the first time, which was capable of predicting a flow with a single shock
surface. The program also tracked the singularity that occurs at the point
where the impingement shock intersects the plume boundary. The floating shock
program became far to complex to program for the case where there are more
than a single shock and several triple points in the flow. A different
approach was investigated which does not explicitly track the discontinuites.
The idea was demonstrated on one dimensional unsteady flow to trace entropy
discontinuities. This method in a simple way tracks a slip surface using a
single grid point, where a "capturing method" smears the discontinuity over
10-15 grid points. The extension of these ideas to three dimeﬁsﬁona] flows is
a project for the future.

Theoretical development of the quantitative description of three
dimensional flows with interesection shock surfaces was achieved. The
intersection of two three shock surfaces leads to a complex process. The
resulting shock pattern depends not only on the strength of the two shock
waves but also on their relative orientation. The study showed how a local
analysis at the shock intersection line could be used to explain the shock
transmission/ reflection configuration at the intersection line. The image of
this intersection process in the hodograph plane (pressure/deflection )
explains the requirement for transition from a regular reflection process to a

Mach reflection process.
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The flow field associated with the axisymmetric plume with a Mach disc
has been analyzed using a new iteration scheme. The heart of this approach is
the integration of the governing interaction equation starting from the sonic
station and proceding upstream. This analysis which leads to the underlying
interaction equation provides theoretical insight for the first time into the
mechanisms governing the Mach disc location. The analysis also includes
viscous mixing effects which have not as yet been studied in past
investigations. The integration of this program with the S5PF plume code is a
project that should be undertaken in the future.

Future capabilities in prediction of three dimensional supersonic flows
as complex as multinozzle exhaust will increase as both new algorithms are
developed and computer capabilites increase. Algorithm development must be
pursued to reduce the enormous computer logic necessary to track complex
intersecting shock patterns. Significant computer speed and size developments
could relax the requirements and alter the shape of the new algorithms. There
is a great amount of work necessary in the fundamental understanding of three
dimensional flows. There are a variety of complex conical processes such as
the the transition of the shock intersection from regular to irreqular and the
shock 1ift off problem that must be studied, understood and cataloged in order
to make progress and achieve prediction capabilities in complex three
dimensional supersonic flows. These unit solutions are the three dimensional
counter parts of the familiar two dimensional wedge shock solution and two
dimensional Prandtl Meyer solutions that are used extensively as building

blocks and initial conditions in two dimensional problems.
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